Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  total response of cIrcuIts usIng



Download 5,69 Mb.
Pdf ko'rish
bet396/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   392   393   394   395   396   397   398   399   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

13.10 
total response of cIrcuIts usIng 
s
-domaIn equIvalent cIrcuIt
The application of 
s
-domain equivalent circuit in obtaining the total response of a circuit is illustrated 
through a set of examples in this section.
example: 13.10-1
The inductor 
L
1
has an initial current of 1 A and the inductor 
L
2
has an initial current of 1 A in the 
directions marked in the circuit in Fig. 13.10-1 (i) Find the 
voltage transfer function 
V
o
(
s
)/
V
s
(
s
) and the input impedance 
function 
V
s
(
s
)/
I
(
s
) (ii) Determine the total response of 
v
o
(
t

if 
v
S
(
t


2
u
(
t
) V.
Solution
(i) Transfer functions and immittance functions are defined 
in the 
s
-domain equivalent circuit. They are defined under 
Fig. 13.10-1 
Circuit for 
Example: 13.10-1 


13.32
Analysis of Dynamic Circuits by Laplace Transforms
zero-state response conditions. They are defined as 
ratios of Laplace transforms of relevant quantities 
under zero-state response conditions. Therefore, they 
are defined under zero initial conditions. The 
s
-domain 
equivalent circuit with zero initial conditions is shown 
in Fig. 13.10-2.
Series–parallel equivalents and voltage–current division 
principle may be employed to arrive at the required ratios. 
Input impedance function 
Z
i
(
s


V
s
(
s
) / 
I
(
s
). 
Z s
s
s
s
s
s
s
s
s
i
( ) (
) / /
(
)
= +
+ =
+
+
+ =
+ +
+
1
1
1
2
1
1
3
1
2
1
2

The transformed current in the second 1
W
resistor may be found out in terms of 
I
(
s
). Then 
V
o
(
s

may be obtained from that current by multiplying by 1
W
. Let this current transform be called 
I
o
(
s
). 
Then,
I s
I s
s
s s
I s
s
s
o
( )
( )
( )
=
+ +
=
+
1
2
1
But 
I s
V s
Z s
V s
s
s
s
s
i
s
( )
( )
( )
( )
=
=
+
+ +
2
1
3
1
2
Therefore, 
V s
V s
I s
V s
I s
V s
s
s
V s
V s
s
s
o
s
o
s
s
s
s
( )
( )
( )
( )
( )
( )
( )
( )
=
×
=
×
+
=
+
+
1
2
1
2
1
2

33
1 2
1
3
1
2
s
s
s
s
s
s
+
×
+
=
+ +
The poles of transfer function are at 
s
= -
2.618 and 
s
= -
0.382. The zero is at 
s

0.
(ii) The total response of 
v
o
(
t
) with 
v
S
(
t


2
u
(
t

V may be solved by mesh analysis or by applying 
superposition principle. Both methods are illustrated 
below. The 
s
-domain equivalent circuit with initial 
conditions accounted and mesh current transforms 
identified is shown in Fig. 13.10-3.
The mesh equations are

+
+ +
− − =
+
− +
+ − =
V s
I s s
I s
s
I s
s
I s
s
s
( )
( )[
]
( )[ ]
( )[ ]
( )[
]
1
2
1
2
1
1 0
1
2
1 1 0
These are expressed in matrix form as below.
s
s
s
s
I s
I s
V s
s
+


+











 =
+






1
2
1
1
0
1
2
( )
( )
( )
Solving for 
I
2
(
s
), we get
I s
s V s
s
s
s
sV s
s
s
s
s
2
2
2
1
1 2
1
3
1
( )
( ( )
)
(
)(
)
( )
=
+
+
+ −
=
+ +
Zero-state Respponse
Zero-input Response
+
+ +
s
s
s
2
3
1
Since 
V
o
(
s


1
×
 I
2
(
s
), 
V s
sV s
s
s
s
s
s
o
s
( )
( )
=
+ +
+
+ +
2
2
3
1
3
1
Zero-state Response
Zero-i
nnput Response
Fig. 13.10-2 
The transformed 
equivalent circuit 
for circuit with zero 
initial conditions
V
S
(
s
)
V
o
(
s
)
I
(
s
)


+
+




s

s

V
S
(
s
)
V
o
(
s
)
1
1




+
+
+
+


s

s



I
2
(
s
)
I
1
(
s
)
I
(
s
)
Fig. 13.10-3 
Transformed 
equivalent circuit of 
circuit in Fig. 13.10-1 
with initial condition 
sources included


Total Response of Circuits Using 
s 
-Domain Equivalent Circuit 
13.33
The roots of denominator polynomial (
i.e.,
poles of transfer function) are at 
s
= -
2.618 and 
s

-
0.382. The input transform 
V
s
(
s


2/
s
.
Therefore, 
sV s
s
s
s
s
A
s
B
s
s
( )
.
.
2
2
3
1
2
3
1
2 618
0 382
+ +
=
+ +
=
+
+
+
A
s
s
s
B
s
s
s
s
s
= +
×
+ +
= −
= +
×
+ +
=−
=
(
.
)
.
(
.
)
.
2 618
2
3
1
0 8945
0 382
2
3
1
2
2 618
2
−−
=
0 382
0 8945
.
.
Therefore, zero-state response 

Inverse of 

+
+
+
0 8945
2 618
0 8945
0 382
.
.
.
.
s
s

0 8945
0 382
2 618
.
(
) ( )
.
.
e
e
u t
t
t
-
-
-
V
The second component of output is expanded in partial fractions as below.
s
s
s
A
s
B
s
2
3
1
2 618
0 382
+ +
=
+
+
+
.
.
A
s
s
s
s
B
s
s
s
s
s
s
= +
×
+ +
=
= +
×
+ +
=−
=−
(
.
)
.
(
.
)
.
2 618
3
1
1 1708
0 382
3
1
2
2 618
2
00 382
0 1708
.
.
= −
Therefore, zero-input response 

Inverse of 
1 1708
2 618
0 1708
0 382
.
.
.
.
s
s
+

+

( .
.
) ( )
.
.
1 1708
0 1708
2 618
0 382
e
e
u t
t
t
-
-
-
V
Total response in the actual time-domain circuit is the sum of zero-state response and zero-input 
response accepted for only 
t

0

and is given by 
v t
e
e
t
o
t
t
( ) ( .
.
)
.
.
=
+



+
0 2763
0 7237
0
0 382
2 618
V for
It is not necessary to split the two components of the response this way always. It was done here only 
to demonstrate how the Laplace transform technique brings out both together in one step. Inverting 
the total response transform 
2
3
1
2
+
+ +
s
s
s
would have resulted in total response straightaway. Indeed 
2
3
1
2
+
+ +
s
s
s

0 2763
2 618
0 7237
0 382
.
.
.
.
s
s
+
+
+
.
The same solution can be arrived at by using Superposition Theorem. This theorem can be applied 
only for the zero-state response components due to various inputs. But then, all the initial conditions 
get translated into sources in the transformed equivalent circuit and hence the circuit analysis problem 
in the 
s
-domain is always a zero-state response problem. Therefore, superposition principle can be 
freely applied in transformed equivalent circuits. The solution term due to initial condition sources 
will be understood as the zero-input response once we get back to time-domain. 
There are three sources in this transformed equivalent circuit. The component circuits required to 
find out the individual response components are shown in Fig. 13.10-4.


13.34
Analysis of Dynamic Circuits by Laplace Transforms
V
S
(
s
)


+
+




s





+
+




1
s

s



+
+




s

s

1
Fig. 13.10-4 
Component circuits for applying superposition theorem in Example: 13.10-1 
The transfer function of the first circuit is already known as 
s
s
s
2
3
1
+ +
and 
V
s
(
s


2
s
. Therefore, the 
output transform in the first circuit is 
2
3
1
2
s
s
+ +
.
(
s

1)//1 
W
shares –1 with 
s
W
in series in the second circuit. Therefore, the voltage transform 
across (
s

1) 
W
is 
(
) / /
(
) / /
(
)
s
s
s
s
s
s
+
+ +
× − =
− +
+ +
1
1
1
1
1
1
3
1
2
. This voltage transform is divided between 
s
W
and 

W
to yield 
− +
+ +
×
+
=

+ +
(
)
s
s
s
s
s
s
1
3
1
1
1
1
3
1
2
2
at the output.
s

1//
s
W
shares 1 in series with 1 
W
to produce 
1
1
1
1
3
1
2
+ +
=
+
+ +
s
s
s
s
s
/ /
across the output.
The total output voltage transform is given by the sum of three output voltage transforms. 
Therefore, 
V s
s
s
s
s
s
s
s
s
s
s
o
( )
=
+ +
+

+ +
+
+
+ +
=
+
+ +
2
3
1
1
3
1
1
3
1
2
3
1
2
2
2
2
. This is the same output transform 
we obtained in the mesh analysis too. 
The time-domain function will be 
v t
e
e
u t
o
t
t
( ) ( .
.
) ( )
.
.
=
+


0 2763
0 7237
0 382
2 618
V
.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   392   393   394   395   396   397   398   399   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish