Ўзбекистон республикаси ахборот технологиялари ва коммуникацияларини ривожлантириш вазирлиги муҳаммад ал-хоразмий номидаги



Download 7,61 Mb.
Pdf ko'rish
bet165/321
Sana10.07.2022
Hajmi7,61 Mb.
#768599
1   ...   161   162   163   164   165   166   167   168   ...   321
Bog'liq
591c3149ad5ef

References
1. Кухарев Г.А. Биометрические системы: Методы и средства идентификации 
личности человека. – СПб: Политехника, 2001.
2. Duda R. O., Hart P.E., Stork D. G. Pattern Classification. – New York: John Wiley & 
Sons Inc., 2001.


248 
PRELIMINARY PROCESSING OF SPEECH SIGNALS BASED ON PERSPECTIVE 
ANALYSIS 
 
A.Sh.Mukhamadiev (TUIT, Head of the department), 
Sh.E.Tashmetov (TUIT, student) 
 
In recent decades, there has been emphasized a sharp increase in interest in the development 
and use of methods and algorithms of processing speech signals [1,2]. One of the most interesting 
areas in the field of processing speech signals is the problem of speech recognition. In recent years, 
speech recognition methods have been widely used in daily life (for example, when processing credit 
card numbers and other access codes in computer-based systems which process mobile data). It should 
be noted that the system of automatic recognition of speech images has received very intensive 
development in the foreign literature in recent years. However, the issues of automatic recognition of 
speech patterns based on the uzbek language are not sufficiently developed. 
The purpose of this report is to develop an algorithm for perceptual analysis of speech signals. 
It should be noted that the considered algorithm is the initial stage in solving the problem of isolating 
the characteristics characterizing the speech signal. 
It is known that the definition of the absolute threshold of audibility is the first stage of 
perceptual analysis of speech and allows you to eliminate information from the speech signal that is 
not perceived by the human ear, and therefore not having value for analysis. 
Consider the discretized speech signal S(n). The processing algorithm for perceptual signal 
processing S(n) can be represented in five consecutive stages. 
In the first stage, the input samples S(n) are normalized in accordance with the window length 
N and the number of bits b used for analysis and represent the individual sample: 


N
n
S
n
x
b



1
2
)
(
)
(

Further, the input signal x(n) is segmented into sections of length N with some overlap, and then 
the power spectral density р(k) 


N
k
1
0


[3]. 
At the second stage, tonal and noise masking signals are determined. After carrying out the 
estimation of the power spectral density and normalization of the sound pressure level, it is necessary 
to isolate the tonal and non-tonal masking components of the signal. The local maximum within the 
sample, exceeding the neighboring components by 7 dB, is considered a tonal masking signal. 
In the third stage, the number of masking signals is reduced by applying two criteria. Using the 
first criterion, tonal and noise masking signals that are below the absolute threshold are discarded. 
The second criterion uses a sliding "0.5 bark window" with which any pair of masking signals, located 
at a distance less than 0.5 bar, is replaced by a stronger one. 
In the fourth step, separate masking thresholds are calculated. After receiving "thinned" sets of 
tonal and noise masking signals, you can calculate individual tonal and noise masking thresholds. 
Each individual threshold represents the masking contribution of the frequency reference to the tonal 
or noise masking signal. 
In the fifth stage, global masking thresholds are defined. At this stage, individual masking 
thresholds are combined in a certain way to find the global threshold for each set of frequencies in the 
subset. The global masking threshold for each frequency sample is a signal-dependent additive 
combination of the absolute threshold powers due to the distribution along the membrane of the tonal 
and noise masking signals determined from the power spectrum. 
Thus, we defined an algorithm for perceptual analysis of speech signals. To evaluate the 
efficiency of the considered algorithm, experimental studies were carried out with the separation of 
signs of speech signals. The results of these studies showed the operability of the developed algorithm 
for solving the problem of isolating the signs of speech signals. 
In conclusion, it should be noted that the considered algorithm can be used to compile various 
software complexes which are oriented toward solving problems of recognizing isolated words. 

Download 7,61 Mb.

Do'stlaringiz bilan baham:
1   ...   161   162   163   164   165   166   167   168   ...   321




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish