Chapter 1: complex number


Complex Exponential function as



Download 0,77 Mb.
Pdf ko'rish
bet8/9
Sana19.02.2022
Hajmi0,77 Mb.
#457810
1   2   3   4   5   6   7   8   9
Bog'liq
LECTURE-1 Complex number S1 2021-2022

Complex Exponential function as 
z
e
 
We also need to give a meaning to the expression 
z
e
when 
z
i
x
y
 
is a complex 
number. Using the Taylor series for 
z
e
as our guide, we define 
0
2
3
4
1
!
!
!
2
3
4
!
z
n
n
e
z
z
z
z
z
n



  




(7) 
and it turns out that this complex exponential function has the same properties as the real exponential 
function. In particular, it is true that 
1
2
1
2
z
z
z
z
e
e
e



(8) 
If we put 
z
y
i

, where 
y
is a real number, in Equation (7), and use the facts that 
2
3
2
4
2
2
5
3
2
,
,
,
,
1
1
i
i
i
i
i i
i
i
i
i
i
i
 
   
  
  
we get 
 
   
 
2
3
4
5
2
3
4
5
2
4
3
5
!
!
!
!
!
!
!
!
cos
sin .
!
!
1
2
3
4
5
!
!
1
2
3
4
5
1
2
4
3
5
z
i
i
i
i
i
i
i
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
i
i
i
y
e
  




  






























(7.1) 
Here we have used the Taylor series for 
cos
y
and 
sin
y
. The result is a famous formula 
called 
Euler’s formula

cos
sin .
i
y
y
i
y
e


(9) 
Combining 
Euler’s
formula (9) with (8), we get 


cos
sin
x
y
x
y
x
i
i
e
e
i
e
e
y
y





(10) 
Thus, 
z
e
represents complex function with real part 
cos
x
e
y

and the imaginary part 
sin
x
e
y

. The exponential function with arbitrary (real) base is defined via the exponential function 
as 


IIUM, Faculty of Engineering
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
23
ln
z
z
a
a
e


The power function can also be defined via the exponential function. In this course we will 
work just with integer powers of 
z
: So, let 
n
be an integer. 
 
i
n
n
n
n
i
r e
=
z
=
r
e


 

Example 15. 
Evaluate: 
a)
i
e

and
b) 
1
2
i
e

 
Solution: 
a)
From (8) we have 
 
cos
sin
1
0
1
i
e
i
i





  
 

b)
Using (9) we get 


1
1
1
1
2
2
c
0
1
2
o
2
s
sin
i
i
e
i
i
i
e
e
e
e
e




 










  





Using the trigonometric representation, the formulas for multiplication and division of two 
complex numbers become easier than when the Cartesian form of complex numbers is used. If 
1
z
is a 
complex number with modulus 
1
r
and phase 
1

and 
2
z
is a number with modulus 
2
r
and phase 
2


then 

 







1
2
1
1
2
2
1
2
1
2
1
2
1
2
1
2
1
2
+
i
r
r
r
cos
+ sin
cos
+ sin
cos
+
+ sin
z
=
i
i
z
i
r
+
r r e
 




 
 





 
 


with the agreement that if 
1
2
 

is larger than 
2

; then 
2

is subtracted from this sum. This gives 
us an 
easy formula for the
th
n
power
of a complex number 


=
cos
r
n
z
+
i
si


which we will 
discuss below. 
Finally, we note that 
Euler’s formula
(8) provides us with an easier method of proving De 
Moivre’s Theorem: 


 


cos
sin
cos
sin
n
i
n
n
r
re
r
n
y
n
i
y
i











(10.a) 


IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
24
De Moiver’s Theorem: 
If 
x
y
r e
i
z

  
i
 and 
n
 is a natural number, then 


 
n
n
n
n
n
r e
z
r
i
e
x
y







i
i
 
(11)
 
Example 16 
(The natural number power of a Complex number)

Use De Moivre’s theorem to find 


10
1
i

. Write the answer in exact rectangular form. 
Solution: 



  






10
10
10
10
0
0
cos
s
1
.
0
in
0
0
0
45
45
45
i
i
0
i
450
450
Rectangular f
e
o
2
2
32
32
32
3
i
i
i
i
2
m
e
r
e




 
=
=
=
=
=
Matched Problem: 
1.
Use De Moivre’s theorem to find 


5
1
3
i

. Write the answer in exact rectangular form. 
2.
Use De Moivre’s theorem to find 


4
1
3
i

. Write the answer in exact rectangular form. 
The Powers and 
n
th
 Root of complex numbers 
The 
th
n
Root of complex numbers are: 






n
n
n
=
cos + sin
n
n
=
cos
+ sin
i
z
i
r
r















For example 


 


 


 
2
2
2
2
3
3
3
3
4
4
4
4
1.
;
2.
;
3.
.
i
i
i
i
i
i
i
i
r e
r e
r e
r e
r e
r
x
e
y
x
y
x
i
y















Explore – Discuss

If 
i
z
r e


, then use 
De Moivre’s theorem
to show that 
1 2
2
i
r e

is a square root of 
z
and 
1 3
3
i
r e

is a cube root of 
z
. We can proceed in the same way as in 
Explore – Discuss
to show that 
1
i
n
n
r e

is an 
th
n
root of 
i
r e


n
a natural number: 


IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
25
 
1
1
i
i
i
n
n
n
n
n
n
n
r e
r
e
r e











But we can do even better than this. 
Theorem 2
(
th
n
– Root Theorem
)
:
 
For 
n
 a positive integer greater, then 


1
1
1
cos
sin
n
n
n
n
r
r
e
z
i
i







(12)
 
But this formula gives us only first root, therefore 
Theorem 3
(
th
n
– Root Theorem
)
:
 
For 
n
 a positive integer greater, then 
1
1
1
is number o
, , ,
,
f roo
2
~
2
ts
.
0 1
1
cos
si
2
2
,
,
n
n
n
n
k
n
n
k
i
n
n
k
k
r
r
n
z
i
e
n
n
n















































(13)
 
Are the 
n
distinct 
th
n
roots of 
i
r e

, and there are no others. For example 
1
3
3
3
2
8
8
,
8
 


Example 17 
(Roots of Complex number)

Find all the values of 
x
for 
3
8
x
 
, and locate these values in a complex plane. 
Solution: 
First, we have to present this complex form as 
z
i
a
b
 
. So we have that 
8
0
z
i
  
, this we can 
write in polar form: 
 
2
8
0
64
8
z
r



 

and 
180
 
 

where 
3
n

, and 
,
0
2
,
1
k

, then 
0
180
 
 
Im
Re
Im
8

0
180
 
 


IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
26
1
1
1
3
3
3
1
1
1
3
3
3
cos
sin
cos
sin
;
c
2
2
0
3
3
3
3
3
3
2
2
2
2
1
3
3
,
,
os
sin
cos
sin
;
0
1
3
3
3
1
3
0
z
z
k
r
r
k
i
r
r
i
i
k
i










 
 













































































































1
1
1
3
3
3
cos
sin
cos
sin
.
2
2
4
4
1
3
3
3
3
3
,
3
2
2
i
r
z
i
r




 
 
























































Example 18 
(Finding all Sixth Roots of a Complex number)

Find six distinct sixth roots of 
1
3
i
 
, and plot them in a complex plane. 
Solution: 
The first we will write 
1
3
i
 
in polar form: 
 
 
 
2
2
ta
0
n
12
1
3
1 3
4
2
3
1
z
r
3






 


 


, then 
60
1
3
2
i
z
i
e

  
 

Using the 
th
n
– root theorem, all six roots are given by 


0
0
0
0
120
360
6
6
1 6
20
60
1 6
2
,
, , , , ,
2
0 1 2 3 4 5
k
k
i
i
e
k
e












Thus,


 


 


 


 


 


 
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
20
60
20
20
60
80
20
60
140
20
60
200
20
60
26
0
1 6
1 6
1
1 6
1 6
2
1 6
1 6
3
1 6
1 6
4
1 6
1 6
5
1 6
1 6
0
20
60
320
;
;
.
;
;
;
1
2
3
4
i
i
i
i
i
i
i
i
i
i
i
6
i
5
2
2
2
2
2
2
2
2
2
2
2
e
e
e
e
e
e
e
e
e
e
e
w
w
w
w
w
w
e
2


























w
2
 
w
1
 
w
3
 
w
4
 
w
5
 
w
6
 
Radius 
2
1
/
6
 


IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
27

Download 0,77 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish