Chapter 1: complex number



Download 0,77 Mb.
Pdf ko'rish
bet3/9
Sana19.02.2022
Hajmi0,77 Mb.
#457810
1   2   3   4   5   6   7   8   9
Bog'liq
LECTURE-1 Complex number S1 2021-2022

Complex numbers 

complex number
is an expression of the form 
z
a b
i
 
where 
a
and 
b
are real 
numbers and 
2
)
1
1
(
i
i
 
 
. The 
real part
of this complex number is 
a
and the 
imaginary part
is 
b
. The complex number 
a
i
b

can be represented by the ordered pair 


,
a b
and plotted as a point in a plane (called the Argant plane) as in shown in 
Figure 1
.
Two complex numbers are 
equal
if their real parts are equal and their imaginary 
parts are equal. A complex number whose real part is 
0
is a 
pure imaginary number

Addition and subtraction of complex numbers 

 
 
 


 
 
 

1
2
1
2
z
z
z
z
a b
a
b
a b
a
c
d
c
d
i
i
c
d
i
c
i
b
i
i
d



 

 




 

 


For example, 

 
 
 


 
 
 

3 7
3
7
7
1
10
7
7
7
6
3 7
3
1
4
7
8
i
i
i
i
i
i
i
i
  

   


  

  
 
Multiplication of complex numbers 
The product of two complex numbers is defined so that the usual commutative 
and distributive laws hold: 

 


 

2
1
2
2
,
.
1
a
b
a
a
b
b
a
a
b
c
d
c
d
c
d
c
d
c
d
c
d
d
c
where
b
a
b
i
i
i
i
i
a
b
i
i
i
z z
i
 

 












 
Figure 1 
Im
Re
2 3
i

4 2
i
 
2 2
i
 
3 2
i

i

i


IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
7
Example 1: 

 
  





2
7
5
7
5
35
3 7
3 7
3 7
49
15
49
15
49 15
6
35
35
21
21
2
4
1
1
.
4
i
i
i
i
i
i
i
i
i
i
i
i
 
 
 



  


  








Division of complex numbers 
Division of complex numbers is much like rationalizing the denominator of a 
rational expression. For the complex number 


z
a b
i


, we define its 
complex 
conjugate
to be 


z
a b
i


. To simplify the quotient of complex number such 
as
1
2
a
z
i
d
z
b
i
c



, we have to multiply the numerator and the denominator by the conjugate 
of denominator.

 

1
2
1
2
2
2
2
2
2
2
( )
i
i
i
i
i
i
i
a b
c d
c
d
c
d
c
d
c
d
c d
c
d
c
d
d
c
c
d
a b
a
a
b
b
a
b
a
b
a
a
b
c
d
c
d
c
d
i
i
z
i
i
z
b
i

























Example 2: 
Let given two complex number as 
1
7 5
z
i
  
and 
2
2 5
z
i
 
the find the ratio of 
these complex number 
1
2
7 5
?
2 5
z
z
i
i
 


Solution: 
To solve this expression, we will simplify the complex ratio by multiplying 
numerator and denominator by the conjugate of denominator 
2
2 5
z
i
 
, namely 
2
2 5
z
i
 

 
    
 
   
 


1
2
2
7 2
7
5
5
2 5
5
7 5
2 5
2 5
2 5
2 2 2
5
5
2 5
5
14 35
10
25
14 35
10
25
4 25
29
25 14
35 10
11 25
11
25
29
.
29
29
29
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
z
z
   


 

 






  

 

 


 





 






If 
r

is negative, then the principal 
square root
of
r

is 
2
i
r
i
r
r
r
   
 



IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
8
There two 
square roots
of 
r

are 
i
r
and 
r
i

. With this convrention, the 
usual derivation and formula for the roots of the quadratic equation such as 
2
0
x
x
a
b
c
  
are valid even when 
2
0
4
b
ac



2 4
2
b
b
ac
a
x
 



Example 3: 
Find the roots of the equation 
2
1
0
x
x
  
Solution: 
Using the quadratic formula, we have 
2
1
1
1
1
1
1
4
3
3
2
2
2
i
x
 
 
  
 





We observe that the solution of the equation in Example 3 are complex conjugates of each 
other. In general, the solutions of any quadratic equation 
2
0
x
x
a
b
c
  
with real coefficients 
,
a b
and 
c
are always complex conjugates. (If 
z
is real, 
z
z

, so 
z
is its own conjugate.) 
Example 4: 
Solve 
2
x
x
2
2
0



Solution: 
Using the quadratic formula 
   
   
 
2
2
x
x
4
2
2
2
4
1
2
2 1
2
4
8
2
4
b
2
x
b
c
a
2
a
 
  


  

 






 



But 
 
4
4
1
4
2
i
1
2
1
 
  
      
(using 
the 
definition 
of 
i
). 
Therefore 
2
4
2
2
1
2
2
2
2
1
2
2
2
2
i
i
x
x
2
i
 


 





 
 
. Therefore, the two solutions are 
x
i
1
 
and 
x
i
1
 

We next need to address an issue on dealing with square roots of negative numbers. From the 
section on radicals, we know that we can do the following. 
6
36
4 9
4
9
2 3 6


 

  



IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
9
In other words, we can break up products under a square root into a product of square roots 
provided both numbers are positive. It turns out that we can actually do the same thing if 
one
of the 
numbers is negative. For instance, 
 
 
6
36
4
9
4
9
2
3
6
i
i
i
 

    

 

As well as complex number use within mathematics, complex numbers have practical 
applications in many fields, including physics, chemistry, biology, economics, electrical engineering, 
and statistics. 
Any complex number is then an expression of the form 


a
i
i
b
x
y


, where 
a
and 
b
are old-fashioned real numbers. The number 
a
is 
called the real part
of 
a
b
i

, and 
b
is 
called its 
imaginary par
t
.
Example 5. 
Find 
,
x y
if 




2
3
4
2
x
y
i
x
i
i
y



 

Solution: 
Left hand side (LHS): 






2
2
3
4
2
9 12 2
16
2
2
9
24
16
2
2
7
2
.
24
2
i
i
i
i
i
i
x
y
x
y
x
y
S
x
y
i
LH
i




 
 


 



  


So, from this we have that: 
The real part is
and
Imaginer part is 
7
2
2
7
7
3
.
x
x
x
x
x

  

 
 
24
2
2
24
24
24
.
y
y
y
y
y
y





 
 


IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
10

Download 0,77 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish