Chapter 1: complex number



Download 0,77 Mb.
Pdf ko'rish
bet7/9
Sana19.02.2022
Hajmi0,77 Mb.
#457810
1   2   3   4   5   6   7   8   9
Bog'liq
LECTURE-1 Complex number S1 2021-2022

principal 
argument
of 
z
and is denoted by 
Arg
( )
z
. This rectangular–polar relationship is illustrated in 
Figure 
10
(
Complex plane
). 


IIUM, Faculty of Engineering
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
19
Definition 6 
(
General Polar form of a Complex Number
)

For 
k
 any integer,






i
k
2
cos
si
2
2
i
i
y
z
x
n
r
k
k
r









 







e
(4) 
The number 
r
is called the 
modulus
or 
modulus value
of 
z
and is denoted by mod 
z
or 
z

The polar angle that the line joining 
z
to the origin makes with the polar axis is called the 
argument
of 
z
and is denoted by 
arg
z
. from 
Figure 8
we see the following relationships: 
2
2
r
x
y



0
0
180
2
360
,
.
,
k
k
k
z






For example: 
,
2
2
z
x
y
Never
mo
negetive
z
d
r

 


 
,
arg
k
k
any in eg
2
er
z
t


 

where 
sin
y
r

=
and 
cos
x
r

=
. The argument 

is usually chosen so that 
0
0
180
180



<
or 





<

Example 12 
(
From Rectangular to Polar
)

Write parts 
A
– 
C
in polar form, 

in radians, 





<
. Compute the modulus and 
arguments for parts 
A
and 
B
exactly; compute the modulus and argument for part 
C
to two decimal 
places. 
,
,
1
2
3
A
1
3
5
2
i
i
)
B)
C
z
z
i
z
)
 
 

  

Solution: 
Locate in a complex plane first; then if 
x
and 
y
are associated 
with special angles, 
r
and 

can often be determined by inspection. 
A)
A sketch shows that 
1
z
is associated with a special 
0
45
triangle 
(
as 
in 
Figure
). 
Thus, 
by 
inspection. 


4
4
n
7
ot
2
r






,
, and 




i
y
co
z
=
+
i
i
s
s
=
x
r
r
in
e



 





 
2
2
r
x
y


2
2
r
b
a


sin
b
r


cos
a
r




( , )
a
b
 
0, 0
Figure 10


 

1
-
i
 
-





IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
20
1
i
cos
sin
2
4
4
z
























+

B)
A sketch shows that 
2
z
is associated with a special 
0
0
90
60

triangle (
as in Figure
). Thus, by inspection. 
6
2
5
,
r




, and 


2
5
5
5
2
6
6
i
co
z
s
sin
i
2












6
e

Example 13 
(
From Rectangular to Polar
)

Write the following complex numbers in polar form using their principal arguments: 
a)
1
z
i
1
 

b)
2
z
i
1
3
 

Solution: 
a)
The first we will compute 
r
and 


1
2
2
1
1
2
r
z




and 
tan
1
1
a
b
1

  

Therefore, 
 
0
45
z
Arg
4


 
and by 
equation
(
1
) we have




4
1
i
cos
si
2
n
cos
sin
r
e
2
4
i
z
4
i



















b)
Here again we will compute 
r
and 


 
2
2
2
1
3
1
z
4
2
r
3


 

 

and 
tan
1
b
3
a
3


 
 

Since 
2
z
lies in the fourth quadrant, we must have, 
 


0
60
rg
z
3
A


  
 
and by 
equation
(
2
) we have




1
i
3
cos
si
2
n
cos
s
r
i
i
2
3
n
e
i
z
3














 

















=
As shown in 
Figure 11

3
Im
 
Re
 
2

1

1
0
4

3


2
2
1
1
1
i
z
 
2
1
3
i
z
 
Figure 11
 


 

3
i


 
3

 





IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
21
Multiplication and Division in Polar form: 
The following important result is known as 
Euler’s formula



cos
sin
i
r e
i
z
r





 

(5) 
Every non–zero complex number 
z
a b
i
 
, with polar coordinates 


,
r

can be 
written as 


cos
sin
a b
r
z
i
i


  

in polar form, and 
i
i
b
re
z
a

  
in exponential form. 
Some people call both of the above forms the polar form of 
z
, since they are 
both based on the polar coordinates of 
z

Theorem 1
(
Products and Quotients in Polar Form
)
:
 
If 
1
1
1
r
z
e


i
 and 
2
2
2
r
z
e


i
, then: 




1
2
1
2
1
1
2
2
1.
2.
.
1
2
1
2
1
2
1
1
1
2
2
2
z
z
z
z
r e
r e
r r e
r e
r
e
r e
r
 



 





 



i
i
i
i
i
i
 
(5)
 
Example 14 
(Products and Quotients)

If 
0
1
45
8
e
z

i
and 
0
2
30
2
e
z

i
, then find 
1.
2.
.
1
1
2
2
z
z
z
z


Solution: 


1)
0
0
1
2
0
0
0
45
30
45
30
75
8
2
8 2
16
z
z
e
e
e
e







i
i
i
i


2)
0
1
0
2
0
0
0
45
30
45
30
15
8
2
8
2
z
4
z
e
e
e
e




i
i
i
i

1.3
 
Statement Euler’s formula. De Moivre’s Theorem for a rational index 
Trigonometric Representations of 
z
 
Euler's formula was proved (in an obscured form) for the first time by Roger Cotes in 1714, 
then rediscovered and popularized by Euler in 1748. 


IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
22
Euler proved this formula using power series expansions of exponential, sine and cosine 
functions (and this proof can be subject of your project). This formula allows the following 
simplification 


i
e
i
=
= cos +
sin =
cos
i
+ sin
r
r
r
x
y
i
i
=
z
r e









(6) 

Download 0,77 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish