dt
Imk 0, k 0 , (32)
d bk,t 4ik 2b(k,t), dt
k
* , (33)
dBn (t) 4ik 2B (t) . (34)
dt
Отсюда следует, что нули kn kn (t),
n n
n 1, 2,..., N
функции a(k,t) также не зависят от
времени, что означает (27). Из (32), (33) и вида r ( t, k) находим (26). Из (34) и вида ( t) полу-
чим (28).
Теорема доказана.
Заключение. Полученные результаты полностью определяют эволюцию спектральных дан- ных во времени, что позволяет решить задачу (1)-(3) по следующему алгоритму: Пусть даны
v0 ( x) и u0 ( x)
При заданных v0 (x) и u0 (x) находим данные рассеяния
для T (0, k )
r (k)
b (k)
a(k)
, k R, k , k ,..., k , , ,...,
1 2 N 1 2 N
По результатам теоремы получим временную эволюцию данных рассеяния
r ( t, k), k R, k ( t), k ( t),..., k ( t), ( t), ( t),..., ( t)
для T (t, k)
1 2 N 1 2 N
По полученным данным рассеяния однозначно определяем функцию ства (13)
F ( x, t) из равен-
Подставляя F (x, t) в интегральные уравнения Гельфанда-Левитана-Марченко (14), (15)
и решая эту систему, получим
K (0) (x, y, t)
и K (1) (x, y, t)
Далее из (32), (33) и (34) выводим
u u( x, t) можно получить по формулам 16;
K ( x, y, t)
, тогда потенциалы
v v( x, t) и
Mamurov Bobokhon (Candidate of Physics and Mathematics, Associate Professor, Bukhara State University; bmamurov.51@mail.ru.)
REGULARITY OF A NON-VOLTERRA QUADRATIC STOCHASTIC OPERATOR ON THE 2D SIMPLEX
Аnnotatsiya. Maqolada ikki o‘lchovli simpleksda novolterra tipidagi kvadratik stoxastik operator qaraladi. Simpleks markazi bu operator uchun yagona qo‘zg‘almas nuqta va u tortuvchi tipga ega ekan- ligi isbotlangan. Lyapunov funksiyasi qurilgan va u yordamida ixtiyoriy boshlang‘ich nuqtada bu opera- tor traektoriyasi simpleks markaziga intilishi ko‘rsatilgan.
Аннотация. В настоящей статье мы рассматриваем невольтерровский квадратичный стохастический оператор, определенный на двумерном симплексе. Доказано, что центр симплек- са является единственной неподвижной точкой этого оператора и имеет притягивающий тип. Построена функция Ляпунова и с ее помощью доказано, что для любой начальной точки траек- тория этого оператора приближается к центру симплекса.
Annotation. In the present paper, we consider a non-Volterra quadratic stochastic operator defi- ned on the two-dimensional simplex. We showed that the center of the simplex is a unique fixed point of this operator and it has attracting type. We constructed a Lyapunov function and using it we showed that for any initial point the trajectory of this operator approaches to the center of the simplex.
Kalit so‘zlar. kvadratik stoxastik operator, volterra va novolterra operatorlari, simpleks, traekto-
piya.
Ключевые слова. квадратичные стохастические орераторы, вольтерровские и невольтер-
ровские операторы, симплекс, траектория.
Key words. Quadratic stochastic operator, Volterra and non-Volterra operators, simpleks, trajec-
tory.
Introduction. The notion of quadratic stochastic operator was introduced by S.Bernstein
in [1]. Such quadratic operators arise in many models of mathematical genetics, namely, in the theory of here-dity (see e.g. [3, 4, 5, 6, 8, 9, 7]).
A quadratic stochastic operator may arise in mathematical genetics as follows. Consider a biolo- gical (ecological) population, i.e., a community of organisms closed with respect to reproduction. Sup- pose that each individual of the population belongs only to one of the species (genetic type) 1, … , 𝑚. The scale of species is such that the species of the parents 𝑖 and 𝑗, unambiguously, determine the probability of every species 𝑘 for the first generation of direct descendants. Denote this probability, called the inhe- ritance coefficient, by 𝑝 𝑖𝑗,𝑘. Evidently that 𝑝 𝑖𝑗,𝑘 ≥ 0 for all 𝑖, 𝑗, 𝑘 and that
∑
𝑚
𝑘=1
𝑝𝑖𝑗,𝑘 = 1, 𝑖, 𝑗, 𝑘 = 1, … , 𝑚.
Let (𝑥1, 𝑥2, … , 𝑥𝑚) be the relative frequencies of the genetic types within the whole population in the present generation, which is a probability distribution. In the case of panmixia (random interbreeding) the parent pairs 𝑖 and 𝑗 arise for a fixed state x = (𝑥1, 𝑥2, … , 𝑥𝑚) with probability 𝑥𝑖𝑥𝑗. Hence, the total probability of the species 𝑘 in the first generation of direct descendants is defined by
𝑥′𝑘 = ∑
𝑚
𝑖,𝑗=1
𝑝𝑖𝑗,𝑘𝑥𝑖𝑥𝑗, 𝑘 = 1, … , 𝑚.
The association x ↦ x′ defines an evolutionary quadratic operator. Thus evolution of a population can be studied as a dynamical system of a quadratic stochastic operator [6].
The paper is organised as follows. In Section 2 we recall definitions and well known results from the theory of Volterra and non-Volterra QSOs. In Section 3 we consider a non-Volterra QSO and show that this QSO has a unique fixed point. Moreover, we prove that this operator has the property being regular.
𝒊=𝟏
2. Preliminaries. Let 𝑺𝒎−𝟏 = {𝐱 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎) ∈ 𝑹𝒎: 𝒙𝒊 ≥ 𝟎, ∑𝒎 𝒙𝒊 = 𝟏}
be the (𝑚 − 1)‒ dimensional simplex. A map 𝑉 of 𝑆𝑚−1 into itself is called a quadratic stochastic operator (QSO) if
𝑖,𝑗=1
(𝑉x)𝑘 = ∑𝑚
for any x ∈ 𝑆𝑚−1 and for all 𝑘 = 1, … , 𝑚, where
𝑝𝑖𝑗,𝑘𝑥𝑖𝑥𝑗 (1)
𝑘=1
𝑝𝑖𝑗,𝑘 ≥ 0, 𝑝𝑖𝑗,𝑘 = 𝑝𝑗𝑖,𝑘 , ∑𝑚
𝑝𝑖𝑗,𝑘 = 1, ∀ 𝑖, 𝑗, 𝑘 = 1, … , 𝑚. (2)
Assume {x(𝑛) ∈ 𝑆𝑚−1: 𝑛 = 0,1,2, … } is the trajectory of the initial point x ∈ 𝑆𝑚−1 , where
x(𝑛+1) = 𝑉(x(𝑛)) for all 𝑛 = 0,1,2, …, with x(0) = x.
Definition 1. A point x ∈ 𝑆𝑚−1 is called a fixed point of a QSO 𝑉 if 𝑉(x) = x.
Definition 2. A QSO 𝑉 is called regular if for any initial point x ∈ 𝑆𝑚−1, the limit
lim 𝑉(x(𝑛))
𝑛→∞
exists.
Note that the limit point is a fixed point of a QSO. Thus, the fixed points of a QSO describe limit or long run behavior of the trajectories for any initial point. The limit behavior of trajectories and fixed points play an important role in many applied problems (see e.g. [3, 6, 8, 7]). The biological treatment of the regularity of a QSO is rather clear: in the long run the distribution of species in the next generation coincides with the distribution of species in the previous one, i.e., it is stable.
Definition 3. A continuous function 𝜑: int𝑆𝑚−1 → 𝑅 for an operator 𝑉 if the limit lim 𝜑(𝑉𝑛(x))
𝑛→∞
exists and finite for all x ∈ 𝑆𝑚−1.
A Lyapunov function is very helpful to describe an upper estimate of the set of limit points.
However there is no general recipe on how to find such Lyapunov functions.
Let 𝐷x𝑉(x∗) = (∂𝑉𝑖/ ∂𝑥𝑗)(x∗) be a Jacobian of 𝑉 at the point x∗.
Do'stlaringiz bilan baham: |