Основные понятия функции двух переменных



Download 1,86 Mb.
bet13/16
Sana01.04.2022
Hajmi1,86 Mb.
#522636
1   ...   8   9   10   11   12   13   14   15   16
Bog'liq
2-лекция. Функция нескольких переменных

4.1. Скалярное поле

Предположим, что в каждой точке некоторой области задано значение скалярной физической величины , т.е. такой величины, которая полностью характеризуется своим числовым значением. Например, это может быть температура точек неравномерно нагретого тела, плотность распределения электрических зарядов в изолированном наэлектризованном теле, потенциал электрического поля и т.д. При этом называется скалярной функцией точки, записывается это так . Область , в которой определена функция , может совпадать со всем пространством, а может являться некоторой его частью.


Определение 4.1. Если в области задана скалярная функция точки , то говорят, что в этой области задано скалярное поле.

Будем считать, что скалярное поле стационарное, т.е. величина не зависит от времени .


Если физическая величина векторная, то ей будет соответствовать векторное поле, например, силовое поле, электрическое поле напряженности, магнитное поле и др.

Если скалярное поле отнесено к системе координат , то задание точки равносильно заданию ее координат , и тогда функция можно записать в обычном виде функции трех переменных: .


Рассмотрим точки области , в которых функция имеет постоянное значение , т.е. . Совокупность этих точек образует некоторую поверхность. Если возьмем другое значение , то получим другую поверхность. Эти поверхности называются поверхностями уровня.
Определение 4.2. Поверхностью уровня скалярного поля называется геометрическое место точек, в которых функция принимает постоянное значение, т.е.
.

В курсе физики при рассмотрении поля потенциала поверхности уровня называют обычно эквипотенциальными поверхностями (т.е. поверхности равного потенциала).


Если скалярное поле плоское, т.е. изучается распределение значений величины в какой-то плоской области, то функция зависит от двух переменных, например, и . Линиями уровня этого поля будут линии уровня функции , т.е. .
В прикладных науках часто употребляются линии уровня для представления изучаемой функции двух независимых переменных. Так, например, рассматривая высоту точки местности над уровнем моря как функцию двух переменных – координат точки, на карты наносят линии уровня этой функции. Они называются в топологии горизонталями. С помощью сети горизонталей удобно следить за изменением высоты местности. В метеорологии пользуются сетями изотерм и изобар (линий одинаковых средних температур и линий равных средних давлений), являющимися линиями уровня температуры и давления как функции координат точки местности.



Download 1,86 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   16




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish