Общие сведения предварительные замечания



Download 7,9 Mb.
bet1/10
Sana03.02.2023
Hajmi7,9 Mb.
#907206
  1   2   3   4   5   6   7   8   9   10
Bog'liq
kitob tar 123456


ПАРАМЕТРИЧЕСКИЕ КОЛЕБАНИЯ

  1. ОБЩИЕ СВЕДЕНИЯ

Предварительные замечания. Понятие о параметрически возбуждаемых колебаниях было введено в гл. I. В отличие от вынужденных колебаний параметрически возбуждаемые (параметрические) колебания поддерживаются за счет изменения параметров системы. Наиболее часто встречаются колебания с периодическим параметрическим возбуждением, которые описываются дифференциальными уравнениями с периодическими коэффициентами. В этой главе рассматриваются колебания, возбуждаемые периодическими параметрическими воздействиями.
Примеры параметрически возбуждаемых колебаний в машиностроении. Параметрические колебания часто встречаются в задачах динамики механизмов и машин. Вал, сечение которого имеет неодинаковые главные жесткости при изгибе, может испытывать незатухающие поперечные колебания даже в том случае, когда он полностью уравновешен. Причиной поперечных колебаний является периодическое (при постоянной угловой скорости) изменение изгибных жесткостей относительно неподвижных осей. В неподвижной системе координат поперечные колебания вала описываются дифференциальными уравнениями с периодическими коэффициентами. Если использовать координатную систему, которая вращается вместе с валом, то придем к дифференциальным уравнениям с постоянными коэффициентами. Поэтому в данном примере изгибные колебания можно трактовать и как параметрически возбуждаемые колебания, и как автоколебания. Для вала, который может совершать поперечные колебания только в одной плоскости, причиной поперечных колебаний является периодическое изменение изгибной жесткости вала в этой плоскости. Примером системы с периодически изменяющейся приведенной массой служит шатунно-кривошипный механизм. Параметрическое возбуждение колебаний возможно во многих системах, где движение передается через упруго деформируемые звенья, например, в спарниковой передаче в локомотивах. Исследование устойчивости периодических движений в нелинейных системах, как правило, также приводит к линейным дифференциальным уравнениям с периодическими коэффициентами. Применительно к конкретным физическим и техническим объектам неустойчивость невозмущенных движений обычно может быть истолкована как параметрическое возбуждение колебаний (и наоборот). Некоторые из рассмотренных выше примеров также можно интерпретировать как неустойчивость установившихся периодических движений.

Download 7,9 Mb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish