22-variant
1.
.
4
4
0
5
1
2
1
3
1
1
2
1
0
2
1
4
2.
,
0
1
1
3
5
1
1
5
8
A
,
2
1
0
1
2
3
6
7
4
B
1
,
2
.
3. a)
.
1
5
,
3
5
3
,
5
2
3
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
b)
.
1
6
4
,
10
5
3
,
3
4
3
2
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
4. a)
.
0
7
,
0
2
,
0
4
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
b)
.
0
5
3
,
0
3
2
,
0
7
4
3
1
3
2
1
2
1
x
x
x
x
x
x
x
63
23-variant
1.
.
1
1
0
5
2
1
4
0
3
4
1
2
1
2
3
4
2.
,
1
0
1
1
1
2
1
1
2
A
3
2
1
6
4
2
0
6
3
B
,
,
3
5
.
3. a)
.
4
3
3
2
,
7
4
3
,
1
2
5
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
b)
.
12
4
3
2
,
7
4
,
33
5
7
3
2
1
3
1
3
2
1
x
x
x
x
x
x
x
x
4.
a)
.
0
5
15
2
,
0
7
,
0
3
4
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
b)
.
0
5
2
,
0
6
3
,
0
3
3
3
1
2
1
3
2
1
x
x
x
x
x
x
x
24-variant
1.
.
2
1
2
1
0
3
1
3
2
1
1
0
2
1
5
3
2.
,
7
3
0
5
2
9
11
1
6
A
2
3
1
7
2
0
1
0
3
B
,
,
2
1
.
3. a)
.
1
14
3
3
,
0
9
4
4
,
3
4
5
5
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
b)
.
3
2
2
,
3
4
4
,
4
2
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
4
. a)
.
0
3
4
,
0
5
11
2
,
0
5
3
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
b)
.
0
3
,
0
5
4
,
0
4
2
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
64
25-variant
1.
.
2
1
2
4
0
1
3
3
1
1
0
2
4
3
2
1
2.
,
3
2
4
3
8
1
2
7
3
A
,
5
1
2
1
4
2
3
5
0
B
,
1
2
.
3. a)
.
20
5
5
,
2
2
3
,
19
3
5
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
b)
.
0
2
4
6
,
8
3
4
,
9
3
7
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
4. a)
.
0
3
4
,
0
15
2
,
0
7
3
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
b)
.
0
5
4
,
0
2
3
,
0
2
3
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
NAMUNAVIY VARIANT YECHIMI
1.
3
1
5
0
2
0
4
3
0
1
1
1
1
2
7
2
2.
,
1
2
1
2
0
1
2
1
3
A
,
1
7
3
1
1
2
2
1
0
B
,
3
1
.
3. a)
.
1
5
,
3
5
3
,
5
2
3
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
b)
.
3
2
2
,
3
4
4
,
4
2
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
65
4. a)
.
0
3
3
2
,
0
4
3
,
0
2
5
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
b)
.
0
3
2
,
0
2
,
0
3
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
1.
3
1
5
0
2
0
4
3
0
1
1
1
1
2
7
2
Yechish.
Determinantni
1
satr elementlari bo‘yicha yoyamiz.
Determinantning
o
9
xossasiga ko‘ra
14
14
13
13
12
12
11
11
14
14
13
13
12
12
11
11
A
a
M
a
M
a
M
a
A
a
A
a
A
a
A
a
3
1
0
2
0
3
0
1
1
7
3
1
5
2
0
4
0
1
1
2
1
5
0
0
4
3
1
1
1
1
3
5
0
2
4
3
0
1
1
2
)
2
12
0
0
10
0
(
2
)
9
10
0
0
0
12
(
2
)
9
2
0
0
0
0
(
7
.
1
16
26
49
40
)
0
3
0
15
0
4
(
1
2.
,
1
2
1
2
0
1
2
1
3
A
,
1
7
3
1
1
2
2
1
0
B
,
3
1
.
Yechish.
a)
B
A
matritsani topish uchun
A
matritsa elementlarini
ga,
B
matritsa elementlarini
ga ko‘paytiramiz va hosil qilingan
A
va
B
matritsalarning mos elementlarini qo‘shamiz:
1
7
3
1
1
2
2
1
0
1
1
2
1
2
0
1
2
1
3
3
B
A
2
1
0
5
1
5
4
4
9
1
7
3
1
1
2
2
1
0
3
6
3
6
0
3
6
3
9
b)
AB
martitsani matritsalarni ko‘paytirish qoidasi asosida topamiz:
66
1
7
3
1
1
2
2
1
0
1
2
1
2
0
1
2
1
3
AB
5
8
7
0
15
6
9
12
8
1
2
2
7
2
1
3
4
0
2
0
2
14
0
1
6
0
0
2
1
6
14
1
3
6
2
0
c)
A
matritsa determinantini hisoblaymiz:
0
13
12
1
0
4
2
0
1
2
1
2
0
1
2
1
3
|
|
A
.
ij
A
algebraik to‘ldiruvchilarni topamiz:
,
4
1
2
2
0
11
A
,
3
1
1
2
1
12
A
,
2
2
1
0
1
13
A
,
3
1
2
2
1
21
A
,
1
1
1
2
3
22
A
,
5
2
1
1
3
23
A
,
2
2
0
2
1
31
A
,
8
2
1
2
3
32
A
.
1
0
1
1
3
33
A
Teskari matritsani toppish formulasiga ko’ra
1
5
2
8
1
3
2
3
4
13
1
|
|
1
33
23
13
32
22
12
31
21
11
1
A
A
A
A
A
A
A
A
A
A
A
1
2
1
2
0
1
2
1
3
1
5
2
8
1
3
2
3
4
13
1
1
A
A
1
1
2
5
2
2
2
1
0
5
1
2
1
1
)
1
(
5
3
2
1
8
2
1
2
3
2
8
0
1
1
3
1
8
)
1
(
1
3
3
1
2
2
3
2
4
2
2
0
3
1
4
1
2
)
1
(
3
3
4
13
1
E
1
0
0
0
1
0
0
0
1
13
0
0
0
13
0
0
0
13
13
1
3. a)
.
1
5
,
3
5
3
,
5
2
3
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
b)
.
3
2
2
,
3
4
4
,
4
2
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
67
Yechish.
a) Sistemaning kengaytirilgan matritsasi ustida elementar
almashtirishlar bajaramiz:
1
1
1
5
3
5
3
1
5
2
1
3
C
1-qadam. Matritsaning 1- va 2- ustun elementlari o’rnini almashrtirib
olamiz.
1
1
5
1
3
5
1
3
5
2
3
1
2-qadam. Matritsaning 1-satr elementlarini 3-satrning mos elementiga
qo’shib,natijani 3-satrga yozamiz.
6
1
8
0
3
5
1
3
5
2
3
1
3-qadam. Matritsaning 1-satr elementlarini -3ga ko’paytirib, 2-satrning
mos elementiga qo’shib,natijani 2-satrga yozamiz.
6
1
8
0
12
1
8
0
5
2
3
1
4-qadam. Matritsaning 2-satr elementlarini 3-satrning mos elementiga
qo’shib,natijani 3-satrga yozamiz.
6
0
0
0
12
1
8
0
5
2
3
1
6
1
8
0
12
1
8
0
5
2
3
1
~
1
1
5
1
3
5
1
5
2
3
1
C
)
(
3
2
)
(
C
r
A
r
. Demak, sistema birgalikda emas.
68
b) Sistemaning kengaytirilgan matritsasi ustida elementar almashtirishlar
bajaramiz:
~
1
4
3
0
3
4
4
1
4
2
1
1
~
3
2
2
1
3
4
4
1
4
2
1
1
~
3
2
1
2
3
4
1
4
4
2
1
1
C
2
2
0
0
1
2
3
0
4
2
1
1
~
1
4
3
0
1
2
3
0
4
2
1
1
~
)
(
3
3
)
(
C
r
A
r
. Demak, sistema aniq sistema.
1)
3
2
2
3
4
4
4
2
z
y
x
z
y
x
z
y
x
. Berilgan s
istemani Kramer formulalari bilan
yechamiz.
Sistemaning determinantini va yordamchi determinantlarni hisoblaymiz:
;
6
2
1
2
4
1
4
2
1
1
;
6
2
1
3
4
1
3
2
1
4
x
;
18
2
3
2
4
3
4
2
4
1
y
;
6
2
1
2
3
1
4
4
1
1
z
Tenglamaning yechimini Kramer formulalari bilan topamiz:
;
1
6
6
1
1
x
x
;
3
6
18
2
2
x
x
.
1
6
6
3
3
x
x
2) Berilgan s
istemani matritsalar usuli bilan yechamiz.
;
6
2
1
2
4
1
4
1
1
1
Sistema determinantining algebraik to‘ldiruvchilarini topamiz:
6
2
1
4
1
11
A
;
0
2
2
4
4
12
A
;
6
1
2
1
4
13
A
;
;
4
2
1
2
1
21
A
;
2
2
2
2
1
22
A
;
3
1
2
1
1
23
A
69
Do'stlaringiz bilan baham: |