1-Теоrema. Аgar u1-u2+u3-u4+...un+ ... (1) o’zgaruvchan ishorali qator hadlarining absolyut qiymatlaridan tuzilgan
(2)
qator yaqinlashuvchi bo’lsa, u vaqtda (1) o’zgaruvchan ishorali qator ham yaqinlashuvchi bo’ladi.
Bu teorema o’zgaruvchan ishorali qator yaqinlashuvching yetarli shartni ifodalaydi. Аmmo bunday qatorlarning yaqinlashuvchi bo’lishi uchun teorema shartlarining bajarilishi zarur emasdir. Shunday o’zgaruvchan ishorali qatorlar ham borki, ularning o’zlari yaqinlashuvchi bo’lsa ham, lekin hadlarning absolyut qiymatlaridan tuzilgan qatorlar uzoqlashuvchi bo’ladi. Shu munosabat bilan o’zgaruvchan ishorali qatorning absolyut vа shartli yaqinlashishi haqidagi tushunchani kiritish hamda bu tushunchalar bo’yicha o’zgaruvchan ishorali qatorlarni sinflarga ajratish foydalidir.
Та’rif. Ushbu o’zgaruvchan ishorali qator
u1+u2+u3+...+un+... (3)
hadlarining absolyut qiymatlaridan tuzilgan
(4)
qator yaqinlashsa, berilgan qator absolyut yaqinlashuvchi deyiladi.
Аgar (4) qator uzoqlashsa, u holda (3) o’zgaruvchan ishorali qator shartli yoki noabsolyut yaqinlashuvchi qator deb ataladi.
Аbsolyut yaqinlashish tushunchasi yordamida 1‑teoremani bunday ta’riflash ham mumkin: har qanday absolyut yaqinlashuvchi qator yaqinlashuvchidir.
Endi absolyut vа shartli yaqinlashuvchi qatorlarning quyidagi xossalarini keltiramiz:
2‑tеоrema. Аgar qator absolyut yaqinlashuvci bo’lsa, uning hadlarining o’rinlarini ixtiyoriy ravishda almashtirganda ham u absolyut yaqinlashuvchanligicha qoladi. Bu holda qatorning yig’indisi qator hadlarining tartibiga bog’liq bo’lmaydi.
Bu xossa shartli yaqinlashuvchi qatorlar uchun o’z kuchini yo’qotadi.
3‑tеоrema. Аgar qator shartli yaqinlashsa, ixtiyoriy ravishda olingan А soni qanday bo’lishidan qat’iy nazar, bu qatorning hadlarini qatorning yig’indisi shu А sonining o’ziga teng bo’ladigan qilib almashtirish mumkin. Shu bilan birga shatrli yaqinlashuvchi qator hadlarining o’rinlarini shunday almashtirish mumkinki, bu o’rin almashtirishdan keyin hosil bo’lgan qator uzoqlashuvchi bo’lib qoladi.
1. Musbat qatorlarning yaqinlashish sharti. Agar berilgan qatorning hadlari nomanfiy, ya’ni , bo‘lsa, bu qator musbat qator (yoki musbat hadli qator) deyiladi. Ravshanki, musbat qatorlarning xususiy yig‘indilari ketma-ketligi kamaymaydigan ketma-ketlik bo‘ladi, chunki Sn+1=Sn+an+1, bundan Sn Sn+1. Monoton ketma-ketlikning limiti haqidagi teoremadan musbat qatorlar uchun quyidagi yaqinlashish sharti kelib chiqadi:
1-teorema. Musbat qator yaqinlashuvchi bo‘lishi uchun uning xususiy yig‘indilaridan tuzilgan ketma-ketlikning yuqoridan chegaralangan bo‘lishi zarur va yetarli.
Bu teoremadan ko‘rinadiki, musbat qatorlarni yaqinlashishga tekshirish uchun uning xususiy yig‘indilaridan tuzilgan {Sn} ketma-ketlikning yuqoridan chegaralanganligini ko‘rsatish yetarli ekan. Quyida isbotlari shu teoremaga asoslangan musbat qator yaqinlashishining bir nechta yetarli shartlarini ko‘rib chiqamiz.
2. Taqqoslash alomatlari.
2-teorema. Aytaylik,
(1)
(2)
musbat qatorlar berilgan bo‘lsin. Biror n0 nomerdan boshlab anbn munosabat o‘rinli bo‘lsa, u holda
a) (2) qator yaqinlashuvchi bo‘lsa, (1) qator yaqinlashuvchi bo‘ladi;
b) (1) qatorning uzoqlashuvchi bo‘lsa, (2) qatorning ham uzoqlashuvchi bo‘ladi.
Isbot. Aytaylik, bo‘lsin. Shartga ko‘ra anbn munosabat o‘rinli, bundan Sn S’n tengsizlik kelib chiqadi.
a) Agar (2) qatorning yaqinlashuvchi bo‘lsa, u holda {S’n} ketma-ketlik yuqoridan chegaralangan. Demak, (1) qator xususiy yig‘indilaridan tuzilgan {Sn} ketma-ketlik ham yuqoridan chegaralangan. Bundan (1) qator yaqinlashuvchidir.
b) (1) qator uzoqlashuvchi bo‘lsin, u holda {Sn} ketma-ketlik yuqoridan chegaralanmagan. Demak, {S’n} ham yuqoridan chegaralanmagan. Bundan va qator uzoqlashuvchi.
1-misol. Birinchi taqqoslash alomatidan foydalanib
qatorni yaqinlashishga tekshiring.
Yechish. Ushbu qatorni qaraymiz: .
Ravshanki, . Mahraji bo‘lgan geometrik qator yaqinlashuvchi, demak 1-teoremaga ko‘ra berilgan qator ham yaqinlashuvchi bo‘ladi.
2-misol. Birinchi taqqoslash alomatidan foydalanib qatorning uzoqlashuvchi ekanligini asoslang.
Yechish. Berilgan qatorning hadlari, ikkinchi hadidan boshlab garmonik qatorning mos hadlaridan katta, garmonik qator esa uzoqlashuvchi. Demak, birinchi taqqoslash alomatiga ko‘ra berilgan qator uzoqlashuvchi.
Yuqorida isbotlangan teoremadan bir nechta foydali natijalar kelib chiqadi. Bunda biz (2) qator hadlarini musbat, (1) qator hadlarini nomanfiy deb qaraymiz.
1-natija. Agar (1) va (2) qatorlar uchun (k<) mavjud bo‘lsa, u holda (2) qatorning yaqinlashuvchi ekanligidan (1) qatorning yaqinlashuvchi ekanligi kelib chiqadi.
2-natija. Agar (1) va (2) qatorlar uchun (0<k) mavjud bo‘lsa, u holda (2) qatorning uzoqlashuvchi ekanligidan (1) qatorning uzoqlashuvchi ekanligi kelib chiqadi.
Yuqoridagi ikkita natijadan quyidagi natija kelib chiqadi:
3-natija. Agar (1) va (2) qatorlar uchun (0<k<) mavjud bo‘lsa, u holda (1) va (2) qatorlar bir vaqtda yaqinlashuvchi, yoki bir vaqtda uzoqlashuvchi bo‘ladi.
3-misol. qatorni qator bilan taqqoslaymiz.
nisbatni ko‘ramiz. Ma’lumki, . Demak, berilgan qator uzoqlashuvchi.
Do'stlaringiz bilan baham: |