13.57.
8
;
2
13.58
.
8
,
4
;
3
13.59.
2
;
5
2
a
a
13.60
.
3
4
;
0
a
13.61
.
315
256
;
0
a
13.62
.
8
3
;
5
3
a
a
13.63
.
3
4
;
0
b
13.64.
30
4
a
13.65
. 3
13.66
.
(kesim radiusi
3
a
r
)
13.67
.
2
2
3
2
3
a
13
.69.
24
4
0
0
0
a
zdz
dy
dx
y
x
a
x
a
a
13.70
.
4
;
4
;
4
a
a
a
13.71
.
3
;
0
;
0
a
13.72
. 6
13.73
.
2
/
c
b
a
abc
13.74
.
48
/
6
a
13.75
.
110
/
10
a
12.76
.
5
2
e
13.77.
A va B nuqtalardan o’tuvchi to’g’ri chiziqning tenglamasini tuzamiz. Buning uchun
berilgan ikki
nuqtadan o’tuvchi to’g’ri chiziqning tenglamasidan, ya’ni
2
2
1
1
,
,
,
y
x
B
y
x
А
bo’lsa,
1
2
1
1
2
1
y
y
y
y
x
x
x
x
tenglamadan foydalanamiz:
x
y
y
x
y
x
4
3
3
4
0
3
0
0
4
0
u
holda
4
3
y
va
4
5
16
25
4
3
1
1
2
2
y
; AB kesmada
4
0
x
ekanligini hisobga olib, (13.18) formulani
qo’llaymiz:
4
0
4
0
2
4
0
2
5
16
32
5
0
16
32
5
2
16
5
4
1
4
5
4
5
4
3
x
xdx
dx
x
x
dl
y
x
L
13.78.
Bu yerda tog’ri chiziqning
tenglamasi
x
y
bo’ladi, u holda
1
y
,
2
1
1
1
2
y
bo’ladi. (13.18) formulaga
asosan
3
3
3
2
2
2
2
2
3
2
2
3
2
2
2
2
2
a
b
x
dx
x
dx
x
x
dl
y
x
b
a
b
a
b
a
L
13.79.
L:
y
x
ln
, bundan
y
x
1
;
y
y
y
y
y
x
2
2
2
2
2
1
1
1
1
1
u holda (13.18
/
) formulaga ko’ra
2
2
5
5
3
1
2
5
3
1
1
2
1
1
1
2
1
1
1
2
3
2
3
2
1
2
3
2
3
2
2
1
2
2
1
2
2
1
2
2
1
2
2
y
y
d
y
dy
y
y
dy
y
y
y
13.80.
yicha
bo
chiziq
iq
OBA
yicha
bo
yoy
OA
yicha
bo
chiziq
ri
g
to
OA
dx
y
x
'
sin
2
'
3
10
'
'
'
4
13.81
.
2
ln
5
13.82
. 24
13.83
.
1
5
5
3
2
p
13.84
.
1
2
2
n
a
13.85.
b
a
b
ab
a
ab
3
2
2
12
3
a
13.86. To’g’ri chiziqning tenglamasidan x ni topamiz, chunki berilgan
egri chiziqli integralda
x
Q
y
x,
,
0
y
x,
P
.
b
y
a
x
b
y
a
x
b
y
a
x
1
1
1
Berilgan to’g’ri chiziq bilan koordinata o’qlarining kesishgan nuqtalari
b
B
a
A
;
0
,
0
;
bo’ladi.
Masalaning shartiga ko’ra yo’nalish A nuqtadan B nuqtaga qarab yo’nalgan, demak,
b
y
0
bo’ladi.
(13.22
/
) formulaga ko’ra
2
2
2
1
2
ab
ab
ab
y
b
a
ay
ydy
b
a
dy
a
dy
b
y
a
xdy
b
a
b
a
b
a
b
a
b
a
L
13.87.
Bizning
misolda
2
y
x,
,
y
x,
P
x
Q
xy
1)
1
0
,
x
x
y
. Bu holda
dx
dy
bo’ladi va
(13.22)
formulaga asosan
3
1
3
1
1
0
3
1
0
1
0
2
x
dx
x
dx
x
x
x
x
dy
y
x
xydy
L
.
13.91.
Berilgan integralni t o’zgaruvchiga bog’liq oddiy integralga aylantiramiz. Bunda t o’zgaruvchi
dan
2
gacha o’zgaradi.
,
cos
sin
3
,
sin
,
sin
cos
3
,
cos
2
3
2
3
tdt
t
dy
t
y
tdt
t
dx
t
x
bo’ladi u holda (13.23) formulaga asosan
2
9
2
sin
9
sin
sin
9
sin
cos
sin
cos
9
cos
sin
3
sin
sin
cos
3
cos
3
3
3
2
/
2
2
/
2
/
2
2
2
/
2
2
:
3
:
3
t
t
td
dt
t
t
t
t
dt
t
t
t
t
t
t
dy
y
dx
x
L
L
13.92. 3 13.93.
15
56
13.94. 0 13.95. 0 13.96. -0.5 13.97. 0
13.98.
3
3
a
13.99
.
yicha
bo
chiziq
iq
OBA
yicha
bo
yoy
OA
yicha
bo
chiziq
ri
g
to
OA
dx
y
x
'
sin
2
'
3
10
'
'
'
4
13.100
. 1) 8 ; 2) 4.
13.101
. ikki hol ham
8
ydx
xdy
,
chunki bunda
y
P
x
Q
13.102
. 1)
2
5
,
1
a
2)
2
a
13.103
.
2
8
a
13.104.
2
a
13.105
.
4
mab
13.106
.
2
ln
5
13.107
. 24
13.108
.
1
5
5
3
2
p
13.109
.
1
2
2
n
a
13.110
.
b
a
b
ab
a
ab
3
2
2
13.111
.
2
3
a
13.112.
48
4
a
13.113
. Formulaning har
bir qismi
3
4
a
ga teng.
13.114
. Formulaning har bir qismi
16
5
4
3
4
a
ga teng.
13.115
. Formulaning har bir qismi
5
5
12
a
ga
teng.