Объектом исследования является процесс обучения геометрии в основной школе.
Предмет исследования – методика обучения по теме «Четырехугольники» в курсе геометрии основной школы.
Задачи:
Раскрыть содержание понятий методов научного познания.
Изучить учебно-методическую литературу по теме исследования.
Показать применение методов научного познания при изучении геометрического материала.
Разработать методические рекомендации обучения теме и применить их в учебном процессе
Для реализации цели и задач были использованы следующие методы:
Изучение и анализ учебно-методической литературы по теме исследования.
Анализ учебника по геометрии 7-9 автора Атанасян Л.С.
Проведение практического исследования задач.
Разработка урока на тему «Прямоугольник»
Методические рекомендации по изучению темы «Четырехугольники»
§ 2. Параллелограмм и трапеция
Назначение параграфа – ввести понятия параллелограмма и трапеции, рассмотреть свойства и признаки параллелограмма и закрепить полученные знания в процессе решения задач. Следует иметь в виду, что свойства и признаки параллелограмма широко используются в следующих разделах курса, поэтому выработке соответствующих умений и навыков следует уделить серьезное внимание.
Учебный материал можно распределить по урокам следующим образом: параллелограмм, его свойства и признаки – 3 урока, трапеция – 2 урока, задачи на построение циркулем и линейкой – 1 урок.
Определение параллелограмма можно отработать в процессе решения устных задач по заготовленным чертежам.
Теоретический материал п.43 достаточно прост, поэтому доказательство утверждений о свойствах параллелограмма можно предложить учащимся провести самостоятельно (без помощи учебника) на первом же уроке. Для экономии времени можно провести эту работу по вариантам, а затем выслушать учеников, выполнявших разные варианты. Для лучшего усвоения целесообразно решить в классе задачи 376 (а) – устно, 372 (а).
Перед тем как приступить к изучению признаков параллелограмма, следует напомнить учащимся, что означает слово «признак» и что такое обратная теорема. Полезно предложить учащимся сформулировать самим теоремы, обратные утверждениям о свойствах параллелограмма. Нужно подчеркнуть, что если некоторое утверждение верно, то отсюда еще не следует, что верно и обратное утверждение. Обратное утверждение требует отдельного рассмотрения в отношении того, верно оно или нет.
Доказательства утверждений о признаках параллелограмма можно предложить учащимся провести самостоятельно. Для лучшего усвоения доказанных теорем можно решить задачи 379, 382.
На третьем уроке решаются задачи на свойства и признаки параллелограмма. В конце третьего урока целесообразно провести проверочную самостоятельную работу.
Перед изучением п.45 «Трапеция» полезно еще раз вспомнить свойства и признаки параллельных прямых в процессе выполнения устных заданий. В самом п.45 учебника приведены только определения трапеции, ее видов и элементов, а свойства и признаки раскрыты в задачах 386 (свойство средней линии трапеции), 388 (свойство равнобедренной трапеции), 389 (признаки равнобедренной трапеции). Эти задачи необходимо разобрать с учащимися. Это же относится к задаче 385 (теорема Фалеса).
На втором уроке можно провести самостоятельную работу, проверить которую рекомендуется сразу же, например, с помощью мультимедийного оборудования.
Основные требования к учащимся: в результате изучения параграфа учащиеся должны знать и уметь четко формулировать определения параллелограмма и трапеции; уметь формулировать и доказывать утверждения о свойствах и признаках параллелограмма, указывая среди них те, которые являются обратными к уже доказанным утверждениям; знать и уметь обосновывать утверждения о свойствах и признаках равнобедренной трапеции (задачи 388 и 389); уметь решать задачи типа 372 – 377, 379 – 383, 387, 390, 392, решать задачи на построение; должны в ходе изучения темы проявить способность самостоятельно (даже не используя учебник) доказывать утверждения о свойствах и признаках параллелограмма.
Do'stlaringiz bilan baham: |