Adabiyotlar ro‘yhati:
1. Bates C.H., White W.B., Roy R. New High-Pressure Polymorph of Zinc Oxide // Science. 1962. P. 993.
2. Fang X.S., Bando Y., Golberg D. Recent progress in one dimensional ZnS nanostructures: Syntheses and novel properties // Journal of Materials Science & Technology. 2008. V.24. P. 512-519.
3. He Y.N., Shang S.G., Cui W.Y., Li X., Zhu C.C., Hou X. Investigation of luminescence properties of ZnO nanowires at room temperature // Microelectronics Journal. 2009. V.40. P. 517-519.
4. Carp O., Huisman C., Reller A. Photoinduced reactivity of titanium dioxide // Progress in Solid State Chemistry. 2004. Vol. 32, no. 1. P. 33 – 177.
5. Serpone N., Lawless D., Khairutdinov R. Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? // The Journal of Physical Chemistry. 1995. Vol. 99, no. 45. P. 16646–16654.
6. Shan A. Y., Ghazi T. I. M., Rashid S. A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review // Applied Catalysis A: General. 2010. Vol. 389, no. 1. P. 1 – 8.
7. Peter L. M. Dynamic aspects of semiconductor photoelectrochemistry // Chemical Reviews. 1990. Vol. 90, no. 5. P. 753–769.
8. Islam A., Sugihara H., Hara K. et al. Dye Sensitization of Nanocrystalline Titanium Dioxide with Square Planar Platinum(II) Diimine Dithiolate Complexes // Inorganic Chemistry. 2001. Vol. 40, no. 21. P. 5371–5380.
9. Zoski C. G. Handbook of Electrochemistry. Elsevier B.V. Amsterdam, 2007.P. 892. ISBN: 978-0-444-51958-0.
10. Lee H.-S., Woo C.-S., Youn B.-K. et al. Bandgap Modulation of TiO2 and its Effect on the Activity in Photocatalytic Oxidation of 2-isopropyl-6-methyl-4-pyrimidinol // Topics in Catalysis. 2005. — Jul. Vol. 35, no. 3. P. 255–260.
11. Reddy K. M., Manorama S. V., Reddy A. R. Bandgap studies on anatase titanium dioxide nanoparticles // Materials Chemistry and Physics. 2003. Vol. 78, no. 1. P. 239 – 245.
12. Anpo M., Shima T., Kodama S., Kubokawa Y. Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates // The Journal of Physical Chemistry. 1987. Vol. 91, no. 16. P. 4305–4310.
13. Zhang Z., Wang C.-C., Zakaria R., Ying J. Y. Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts // The Journal of Physical Chemistry B. 1998. Vol. 102, no. 52. P. 10871–10878.
14. Berger T., Lana-Villarreal T., Monllor-Satoca D., G´omez R. Thin Films of Rutile Quantum-size Nanowires as Electrodes: Photoelectrochemical Studies // The Journal of Physical Chemistry C. 2008. Vol. 112, no. 40. P. 15920–15928.
15. Iwasaki M., Hara M., Kawada H. et al. Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light // Journal of Colloid and Interface Science. 2000. Vol. 224, no. 1. P. 202 – 204.
16. Choi W, Termin A., Hoffmann M. R. The Role of Metall Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics // The Journal of Physical Chemistry. 1994. Vol. 98, no. 51. P. 13669–13679.
17. Chung J.-H., Choe Y.-S., Kim D.-S. Effect of low energy oxygen ion beam on optical and electrical characteristics of dual ion beam sputtered SnO2 thin films // Thin Solid Films. 1999. Vol. 349, no. 1. P. 126 – 129.
18. Yu J. C., Zhang L., Zheng Z., Zhao J. Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity // Chemistry of Materials. 2003. Vol. 15, no. 11. P. 2280–2286.
19. Akihiko H., Miwako Y., Hiroaki T., Seishiro I. A Promoting Effect of NH4F Addition on the Photocatalytic Activity of Sol-Gel TiO2 Films // Chemistry Letters. 1998. Vol. 27, no. 8. P. 707–708.
20. Nakamura R., Tanaka T., Nakato Y. Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes // The Journal of Physical Chemistry B. 2004. Vol. 108, no. 30. P. 10617–10620.
21. Ihara T., Miyoshi M., Iriyama Y. et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping // Applied Catalysis B: Environmental. 2003. Vol. 42, no. 4. P. 403 – 409.
22. Livraghi S., Paganini M. C., Giamello E. et al. Origin of Photoactivity of Nitrogen-Doped Titanium Dioxide under Visible Light // Journal of the American Chemical Society. 2006. Vol. 128, no. 49. P. 15666–15671.
23. Wang J., Tafen D. N., Lewis J. P. et al. Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts // Journal of the American Chemical Society. 2009. Vol. 131, no. 34. P. 12290–12297.
24. Kuznetsov V. N., Serpone N. Visible Light Absorption by Various Titanium Dioxide Specimens // The Journal of Physical Chemistry B. 2006. Vol. 110, no. 50. P. 25203–25209.
25. Li D., Haneda H., Hishita S., Ohashi N. Visible-Light-Driven N-F-Codoped TiO2 Photocatalysts. 2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification // Chemistry of Materials. 2005. Vol. 17, no. 10. P. 2596–2602.
26. Sakthivel S., Kisch H. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide // Angewandte Chemie International Edition. 2003. Vol. 42, no. 40. P. 4908–4911.
27. Lin X., Rong F., Ji X., Fu D. Carbon-doped mesoporous TiO2 film and its photocatalytic activity // Microporous and Mesoporous Materials. 2011. Vol. 142, no. 1. P. 276 – 281.
28. Di Valentin C., Pacchioni G., Selloni A. Theory of Carbon Doping of Titanium Dioxide // Chemistry of Materials. 2005. Vol. 17, no. 26. P. 6656–6665.
29. Lee H. J., Chang D. W., Park S.-M. et al. CdSe quantum dot (QD) and molecular dye hybrid sensitizers for TiO2 mesoporous solar cells: working together with a common hole carrier of cobalt complexes // Chem. Commun. 2010. Vol. 46. P. 8788–8790.
30. Monllor-Satoca D., Lana-Villarreal T., G´omez R. Effect of Surface Fluorination on the Electrochemical and Photoelectrocatalytic Properties of Nanoporous Titanium Dioxide Electrodes // Langmuir. 2011. Vol. 27, no. 24. P. 15312–15321.
31. Franch M. I., Peral J., Domenech X., Ayllon J. A. Aluminium(iii) adsorption: a soft and simple method to prevent TiO2 deactivation during salicylic acid photodegradation // Chem. Commun. 2005. P. 1851–1853.
32. Maurino V., Minero C., Pelizzetti E. et al. Influence of Zn(II) adsorption on the photocatalytic activity and the production of H2 O2 over irradiated TiO2 // Research on Chemical Intermediates. 2007. Vol. 33, no. 3. P. 319–332.
33. Zhao D., Chen C., Wang Y. et al. Surface Modification of TiO2 by Phosphate: Effect on Photocatalytic Activity and Mechanism Implication // The Journal of Physical Chemistry 2008. Vol. 112, no. 15. P. 5993–6001.
34. Rajeshwar K., de Tacconi N. R., Chenthamarakshan C. R. Semiconductor-Based Composite Materials: Preparation, Properties, and Performance // Chemistry of Materials. 2001. Vol. 13, no. 9. P. 2765–2782.
35. Kamat P. V., Tvrdy K., Baker D. R., Radich J. G. Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells // Chemical Reviews. 2010. Vol. 110, no. 11. P. 6664–6688.
36. Ke D., Liu H., Peng T. et al. Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles // Materials Letters. 2008. Vol. 62, no. 3. P. 447–450.
37. Baker D. R., Kamat P. V. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures // Advanced Functional Materials. 2009. Vol. 19, no. 5. P. 805–811.
38. Bedja I., Kamat P. V. Capped Semiconductor Colloids. Synthesis and Photoelectrochemical Behavior of TiO2 Capped SnO2 Nanocrystallites // The Journal of Physical Chemistry. 1995. Vol. 99, no. 22. P. 9182–9188.
39. Liu D., Kamat P. V. Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films // The Journal of Physical Chemistry. 1993. Vol. 97, no. 41. P. 10769–10773.
40. Beranek R., Kisch H. A Hybrid Semiconductor Electrode for Wavelength-Controlled Switching of the Photocurrent Direction // Angewandte Chemie International Edition. 2008. Vol. 47, no. 7. P. 1320–1322.
41. Takahashi Y., Ngaotrakanwiwat P., Tatsuma T. Energy storage TiO2-MoO3 photocatalysts // Electrochimica Acta. 2004. Vol. 49, no. 12. P. 2025 – 2029.
42. Riboni F., Bettini L. G., Bahnemann D. W., Selli E. WO3-TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides // Catalysis Today. 2013. Vol. 209, no. Supplement C. P. 28–34.
43. Гринвуд Н. Н., Эрншо А. Химия элементов т.2. М.: Бином, 2008. С. 670. ISBN: 9785947743746.
44. Ахметов Т. Г., Порфирьев Р. Т., Гайсин Л. Г. и др. Химическая технология неорганических веществ. Книга 1. М.: Высшая школа, 2002. С. 688. ISBN: 5060042448.
45. Morkoç H., Özgür Ü. Zinc Oxide. Fundamentals, Materials and Device Technology. Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim, 2009. P. 477.
46. Hong R.Y., Li J.H., Chen L.L., Liu D.Q., Li H.Z., Zheng Y., Ding J. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles // Powder Technology. 2009. V.189. P. 426-432. 124
47. Wahab R., Kim Y.S., Shin H.S. Synthesis, Characterization and Effect of pH Variation on Zinc Oxide Nanostructures // Materials Transactions. 2009. V.50. N.8. P. 2092-2097.
48. Barui A.K., Veeriah V., Mukherjee S., Manna J., Patel A.K., Patra S., Pal K., Murali S., Rana R.K., Chatterjee S., Patra C.R. Zinc oxide nanoflowers make new blood vessels // Nanoscale. 2012. V.4. P. 7861-7869.
49. Frantzen A., Scheidtmann J., Frenzer G., Maier W.F., Jockel J., Brinz T., Sanders D., Simon U. Hochdurchsatzmethode zur impedanzspektroskopischen Charakterisierung resistiver Gas-Sensoren // Angewandte Chemie. 2004. V.1
50. P. 770-773. 17. Huang J.R., Wu Y.J., Gu C.P., Zhai M.H., Yu K., Yang M., Liu J.H. Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property // Sensors and Actuators B. 2010. V.146. P. 206-212.
51. Depew H.A. Zinc oxide in rubber // Industrial and engineering chemistry. 1933. V.25. N.4. P. 370-374.
52. Wilmer H., Kurtz M., Klementiev K.V., Tkachenko O.P., Grünert W., Hinrichsen O., Birkner A., Rabe S., Merz K., Driess M., Wöll C., Muhler M. Methanol synthesis over ZnO: A structure-sensitive reaction? // Physical Chemistry Chemical Physics. 2003. V.5. P. 4736-4742.
53. Klingshirn C.F., Meyer B.K., Waag A., Hoffmann A., Geurts J. Zinc Oxide From Fundamental Properties Towards Novel Applications. Springer-Verlag Berlin Heidelberg, 2010. P. 359.
54. Wang Z.L., Kong X.Y., Zuo J.M. Induced growth of asymmetric nanocantilever arrays on polar surfaces // Physical Review Letters. 2003. V.91. N.18. P. 185502(1)- 185502(4).
55. Cho S., Jang J.W., Lee J.S., Lee K.H. Exposed crystal face controlled synthesis of 3D ZnO superstructures // Langmuir. 2010. V.26. P. 14255-14262.
56. Cho S., Jang J.W., Lee J.S., Lee K.H. Exposed crystal face controlled synthesis of 3D ZnO superstructures // Langmuir. 2010. V.26. P. 14255-14262.
57. Vayssieres L., Keis K., Lindquist S.E., Hagfeldt A. Purpose-built anisotropic Metall oxide material: 3D highly oriented microrod array of ZnO // Journal of Physical Chemistry B. 2001. V.105. P. 3350-3352.
58. Liu J.P, Huang X.T., Li Y.Y., Ji X.X., Li Z.K., He X., Sun F.L. Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: Direct solution synthesis, photoluminescence, and field emission // Journal of Physical Chemistry C. 2007. V.111. N.13. P. 4990-4997.
59. Ellmer K. Transparent Conductive Zinc Oxide and Its Derivatives, in: Handbook of transparent conductors, edited by D.S. Ginley, H. Hosono, D.C. Paine, New York: Springer, 2010, p. 193-263.
60. Muth J.F., Kolbas R.M., Sharma A.K., Oktyabrsky S., Narayan J. Excitonic structure and adsorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition. // J. Appl. Phys., 1999, v.85, p. 7884-7887.
61. A comprehensive review of ZnO materials and devices / Özgür Ü., Alivov Ya. I., Liu C. [et al.] // J. Appl. Phys.–2005. – Vol. 98. – P. 1-103.b
62. Podrezova L. V. et al. Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis //Applied Physics A. – 2013. – Т. 113. – №. 3. – С. 623-632.
63.Sangeetha, P. Au/CuOx-TiO2 catalysis for preferential oxidation of CO in hydrogen steam / P.Sangeetha, B. Zhao, Y.-W. Chen // Industrial Engineering Chemistry Research. - 2010. - V. 49. - P. 2096-2102.
Do'stlaringiz bilan baham: |