Mavzu: Yuqori darajali algebraik tenglamar reja; Kirish. Asosiy qism



Download 388,5 Kb.
bet5/7
Sana23.07.2022
Hajmi388,5 Kb.
#840347
1   2   3   4   5   6   7
Bog'liq
Yuqori darajali algebraic tenglamar

3-misol. X5-7x4+12x3+16x2-64x+48 ko’phad uchun x=2 necha karrali ildiz ekanligini aniqlang.
Yechish: Bu misol uchun ham yuqoridagi kabi quyidagi sxemani tuzamiz :




1

-7

12

16

-64

48

2

1

-5

2

20

-24

0

2

1

-3

-4

12

0




2

1

-1

-6

0







2

1

1

-4










Demak ,x=2 uch karrali ildiz bo’lib , berilgan ko’phadni


X5-7x4+12x3+16x2-64x+48 =(x-2)3(x2-x-6)
Shaklda yozish mumkin .Bu yerda x2-x-6=(x-2)*(x+1)-4.


4-misol. P(x)=x3-3x2mx+n ko’phad (x+2)2 ga qoldiqsiz bo’linsa n=? toping.
Yechish p(x)=(x+2)2 φ(x) , x=-2 ko’phadning ikki karrali ildizi desak Gorner sxemasini tuzamiz:




1

-3

m

n

-2

1

-5

10+m

-20-2m+n

-2

1

-7

24-m







Javob: n=68
5-misol. P(x)=ax3+bx2+cx+d ko’phadning ikki karrali bir ildizi x=1 bo’lsa d=?
Yechish: Gorner sxemasidan foydalanamiz .




a

b

c

d

1

a

a+b

a+b+c

a+b+c+d

1

a

2a+b

3a+2b+c





d=2a+b
Javob: d=2a+b
2. Algebraic tenglamalarnig kompleks ildizlari.
K birlik elementga ega bo`lgan butunlik sohasi bo`lsin .
6.1-Ta’rif. Agar K Butunlik sohasini biror αelementi uchun f(α)=0 tenglik bajarilsa , u holda α element f(x) ko`phadning ildizi deyiladi .
Q maydon ustida bir nomalumli birinchi darajali f(x) = αx+b ko`phad α 0 bo`lganda ratsional sonlar to`plamida doimo ildizga ega , chunki f(- ) = -b+b=0 , yani f(- )=0 bo`ladi .
Darajasi n≥1 bo`lgan har qanday ko`phad ildizilarga ega bo`lgan kengaytama maydon doimo mavjud bo`ladi(Algebraning asosiy teoremasiga ko’ra) .
Nolinchi darajali f(x)= α 0 ko`phadni ildizi yo`q , chunki x ga qanday qiymatni bermaylik , baribir (x)= α 0 bo`ladi . biz nol ko`phadni etiborga olmaymiz , bunday ko`phad x ning har bir qiymatida nolga teng .
1-Teorema . f(x) ko`phadni x- α ikkihadga bo`lishdan chiqqan qoldiq f(α) ga teng .
Isboti. Bo`luvchi x- α ning darajasi 1 ga teng bo`lgani uchun qoldiq r(x) yo nolinchi darajali ko`phad , yoki nol bo`lishi kerak , yani
f(x)=(x- α)h(x)+r (6.1)
bo`lib , bu tenglikda x= α desak , f(α) =r ni hosil qilamiz .
2-Teorema x= α element f(x) ko`phadning ildizi bo`lishi uchun f(x) ning x- α ikkihadga bo`linishi zarur va yetarli .
Isboti. Zaruriyligi . x= α ni f(x) ning ildizi deylik . bu holda f(α)=0 bo`ladi. 1-Teoremaga asosan f(x) ni x- α ga bo`lishdan chiqqan qoldiq f(α) ga teng . lekin f(α) =0 bo`lgani uchun r=0 dir demak , f(x) ko`phad x- α ikkihadga qoldiqsiz bo`linadi .
2.Yetarliligi . f(x) ko`phad x- α ga qoldiqsiz bo`linsin :
f(x)=(x- α)h(x) , yani qoldiq r=0 bo`lsin . 1-Teoremaga ko`ra f(α) =r . bunda r=0 bo`lgani uchun f(α)=0 . Demak x= α qiymat f(x) ko`phadning ildizi ekan .

Download 388,5 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish