Geometrik misollar.
1-misol. Shunday egri chiziqni topingki, unga o’tkazilgan istalgan urinmaning koordinata o’qlari orasidagi kesmasi l ga teng bo’lgan o’zgarmas uzunlikka ega bo’lsin.
Yechilishi: egri chiziqqa nuqtada o’tkazilgan urunma tenglamasi ko’rinishga ega, bu yerda urinma nuqtasining o’zgaruvchi koordinatalari. Bu tenglamadan urinmaning Ox o’q bilan kesishish nuqtasi A ning absissasini deb, o’q bilan kesishish nuqtasi B ning ordinatasini esa X=0 deb topamiz. Quyidagiga egamiz: va . va nuqtalar orasidagi masofani ikki nuqta orasidagi masofa formulasi bo’yicha topamiz va uni l ga tenglaymiz; ushbu differensial tenglamani hosil qilamiz:
Bu tenglamani o’zgartirishlardan so’ng:
Bu Klero tenglamasidir. Uning umumiy yechimi koordinata o’qlari orasidagi kesmalari l ga teng uzunlikka ega bo’lgan to’g’ri chiziqlar oilasidan iborat. Yechimni c bo’yicha differensiallaymiz va parametrik shakldagi maxsus integralni ifodalaydigan ushbu tenglamalar sistemasini tuzamiz:
C parametrni yo’qotish uchun ikkinchi ifodadagi x ning qiymatini birinchi ifodaga qo’yamiz:
Agar oxirgi ikkita tenglikning ikkala qismini 2/3 darajaga ko’tarsak va qo’shsak, ushbu tenglamani hosil qilamiz: Shunday qilib, integral to’g’ri chiziqlar oilasining o’rovchi chizig’i bo’ladi.
2-misol. Shunday egri chiziqlarni topingki,ular uchun berilgan ikkita nuqtadan istalgan urinmagacha bo’lgan masofalar ko’paytmasi o’zgarmas bo’lib, b2 ga teng bo’lsin.Berilgan nuqtalar orasidagi masofa 2c ga teng.
Yechilishi: Koordinata o’qlarini shunday tanlab olamizki, berilgan F1 va F2 nuqtalar Ox o’qda, koordinatalar boshi O esa bu nuqtalarning o’rtasida joylashgan bo’lsin, bu sistemada berilgan nuqtalar bunday yoziladi: F1(c;0) va F2(-c;0).Egri chiziqning istalgan M(x;y) nuqtasidagi urinma tenglamasini y X-Y-(x y -y)=0 ko’rinishda yozamiz, bu yerda X va Y_urinma nuqtalarining o’zgaruvchi koordinatalari.Urinma tenglamasini normal ko’rinishga keltirib, berilgan nuqtalardan urinmagacha bo’lgan p1 va p2 masofalarni topamiz:
, .
Shartga ko’ra p1p2=b2, shuning uchun yoki , (30) bu yerda c2 b2=a2 deb olingan.Bu Klero tenglamasi.Uning umumiy yechimi to’g’ri chiziqlar oilasidan iborat.Maxsus integralni topamiz.Buning uchun umumiy yechimni c bo’yicha differensiallaymiz va ushbu tenglamalar sistemasini tuzamiz:
(ikkinchi tenglama x ning ifodasini umumiy yechimga qo’yish orqali hosil qilingan).Bu sistemani quyidagicha qayta yozib olamiz:
b2 oldida musbat ishora olamiz va har qaysi tenglamaning ikkala tomonini kvadratga ko’tarib, qo’shamiz:
.Endi b2 oldida manfiy ishora olamiz va har qaysi tenglamaning ikkala tomonini kvadratga ko’tarib, birinchi tenglamadan ikkinchisini ayiramiz:
.Shunday qilib, izlanayotgan egri chiziqlar ellipslar va giperbolalar ekan.
3-misol. Egri chiziqning istalgan nuqtasidagi urinma osti va normal ostining yarim ayirmasi urinish nuqtasining absissasiga teng.Shu egri chiziqni toping.
Yechilishi: Masala shartiga muvofiq, ushbu differensial tenglamani tuzamiz:
yoki (31).
Bu Lagranj tenglamasidir (ψ(y')=0). Uni integrallash uchun quyidagi ko’rinishda yozib olish: yoki x= va x ni y argumentning funksiyasi deb hisoblash qulaydir. =p deymiz.U holda x= yoki x= . y bo’yicha differensiallasak: . ni p bilan almashtirib va o’zgartirishlar bajargach, ni hosil qilamiz, bu yerdan y=cp.Umumiy integral parametrik shaklda
ko’rinishga ega.p ni yo’qotamiz.Buning uchun ikkinchi tenglamadan ni topamiz va birinchi tenglamaga qo’yamiz; natijada ni yoki 2cx=y2-c2 ni, ya’ni parabolalar oilasini hosil qilamiz.
4-misol. x2+y2+2ay=0 (a-ixtiyoriy parametr) aylanalar oilasining ortogonal trayektoriyalarini toping.
Yechilishi: aylanalar oilasining differensial tenglamasini tuzamiz, buning uchun berilgan tenglamaning ikkala qismini x bo’yicha differensiallaymiz va a ni bunday yo’l bilan topilgan tenglamadan va berilgan tenglamadan yo’qotamiz.Quyidagiga ega bo’lamiz: 2x+2y +2a =0.Bu yerga aylanalar oilasidan topilgan 2a=-(x2+y2)/y ifodani qo’yamiz: yoki o’zgartirishlardan so’ng: (33).Ortogonal trayektoriyalar oilasining differensial tenglamasini bu tenglamada ni -1/ ga almashtirish orqali hosil qilamiz: .Bu bir jinsli tenglama.Uning umumiy yechimini bir jinsli tenglamalarni integrallashning umumiy qoidasidan foydalanib toppish mumkin, biroq osonroq yo’li ham bor.Tenglamani differensiallarda qayta yozib olamiz: 2xydy-y2dx+x2dx=0.Bu tenglamaning ikkala tomonini x2 ga bo’lamiz: yoki ,bu to’liq differensiallardagi tenglamadir.Uni integrallab, yoki ga, ya’ni yana aylanalar oilasiga ega bo’lamiz.Ikkala oilaning barcha aylanalari koordinatalar boshidan o’tadi, biroq berilgan oila aylanalarining markazlari Oy o’qda, trayektoriyalarining markazlari esa Ox o’qda joylashgan.
II-bob.Bizga F(x, y, )=0 (2) ko’rinishidagi tenglama berilgan bo’lsin.Ushbu tenglama yechimining mavjudligi va yagonaligi uchun ushbu teorema o’rinli.
Teorema: F(x, y, )=0 (2) tenglamaning y=y(x) yechimi shartni qanoatlantiruvchi x lar uchun y(x0)=y0 boshlang’ich shartni qanoatlantiruvchi yechimi mavjud agar quyidagi shartlar bajarilsa.
1. F(x, y, ) funksiya o’zining barcha argumentlari bo’yicha uzluksiz funksiya.
2. xususiy hosila mavjud va noldan farqli.
3. xususiy hosila chegaralangan
Misol:
Buni yechish uchun avvalo kabi belgilash kiritib olamiz bundan esa dy=shtdx ni olamiz va kiritilgan belgilashni ifodadagi ning o’rniga keltirib qo’yamiz: . Demak xcht=sht bo’lar ekan. Endi x= tenglikning ikkala tomonini differensiallaymiz: . dy=shtdx tenglikdan dx ni topib yuqoridagi tenglamaga eltib qo’yamiz: .Biz bilamizki , bundan esa bo’ladi.Endi sht ni differensial ichiga kiritamiz: .Bundan y ni osongina topa olamiz va quyidagi natijaga kelamiz:
Isbot.
Oshkormas funksiya mavjudligi haqidagi teoremaga asosan 1-va 2- shartlar F(x, y, )=0 (2) tenglamadan ni oshkor ko’rinishda ( =f(x, y) ) aniqlash imkonini beradi.U vaqtda hosilaga nisbatan yechilgan tenglamaga qo’yilgan Koshi masalasi yechimining mavjudligi va yagonaligi masalasiga kelamiz.f(x, y) funksiyamiz y o’zgaruvchi bo’yicha Libshits shartini qanoatlantiradi.Bundan tashqari ushbu funksiya quyidagi shartni ham qanoatlantiradi: .Ushbu tengsizlik (x0, y0) nuqtaning ixtiyoriy atrofida bajariladi.Bu shartda esa =f(x, y) tenglama yechimining mavjudligi uchun yetarli shart. F(x, y, )=0 (2) tenglamani y o’zgaruvchi bo’yicha differensiallaymiz va bunda =f(x, y) ekanligini inobatga olamiz va tenglikni hosil qilamiz.Bundan bo’ladi, bunda ekanligi ma’lum bo’lsa dan ni hosil qilamiz.
bo’lsa bo’ladi.Bundan kelib chiqadiki F(x, y, )=0 (2) chap tomonidagi funksiya ga nisbatan olingan hosilasi emas balki y bo’yicha olingan hosilasi ham chegaralangan degan xulosaga kelamiz.Demak
qanoatlantiruvchi yechimi mavjud va yagona.
Ta’rif:F(x, y, )=0 (2) tenglama yechimi mavjudligining shartlari bajarilmaydigan (x, y) nuqtalar to’plami F(x, y, )=0 (2) tenglamaning maxsus to’plami deyiladi.
Misol:
Quyidagicha belgilash kirtamiz va shu belgilashni ifodadagi lar o’rniga keltirib qo’yamiz: k2-(2x+cosx)k+2xcosx=0.Bundan k1=2x va k2=cosx ildizlarni topib olamiz.Topilgan k larni yuqoridagi belgilashga eltib qo’yib y larni topib olamiz.Ya’ni: =2x bundan y=x2+c va =cosx bundan esa y=sinx+c.Demak yechimlar y=x2+c va y=sinx+c ekan.
Misol:
ni tenglikning narigi tomoniga o’tkazib x ni topib olamiz: , x= .Quyidagi =t belgilashni kiritamiz va ning o’rniga t ni keltirib qo’yib hisoblaymiz: x= . =t ni dy=tdx ko’rinishda yozib dx= ni topib olamiz. x= tenglikning ikkala tomonini differensiallaymiz: dx=t dt.Endi dx ning o’rniga dx= topgan ifodamizni keltirib qo’yamiz: dy=t2 dt.Bu ifodadan y ni bemalol topa olamiz.Demak umumiy yechim:
Do'stlaringiz bilan baham: |