Matematik analiz” fani bo’yicha “chiziqli funksionallar va ularga bog’liq misollar yechish



Download 48,78 Kb.
bet2/5
Sana16.06.2022
Hajmi48,78 Kb.
#676073
1   2   3   4   5
Bog'liq
To\'raboyev kurs ishi

1.2 Normalangan fazolar
Ta’rif. Aytaylik X haqiqiy chiziqli fazo bo‘lib, uning har bir x elementiga haqiqiy, ‖𝑥‖ orqali belgilangan sonni mos qo‘yuvchi ‖∙‖: 𝑋 → 𝑅 akslantirish berilgan bo‘lsin. Agar bu akslantirish
1. Har doim ‖𝑥‖ ≥ 0. Shuningdek, 𝑥 =  uchun ‖𝑥‖ = 0 va aksincha, agar ‖𝑥‖ = 0 bo‘lsa, u holda 𝑥 = ;
2. Ixtiyoriy  son uchun ‖𝜆𝑥‖ = |𝜆| ∙ ‖𝑥‖;
3. Ixtiyoriy ikki 𝑥 va 𝑦 elementlar uchun ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖
shartlarni qanoatlantirsa, u norma deyiladi.
Bu shartlar norma aksiomalari deb ham yuritiladi. Uchinchi shart uchburchak aksiomasi deyiladi.
Norma kiritilgan chiziqli fazo normalangan fazo deyiladi. Odatda ‖𝑥‖ son 𝑥 elementning normasi deyiladi. Agar (𝑥, 𝑦) = ‖𝑥 − 𝑦‖ belgilash kiritsak, u holda (𝑥, 𝑦) metrika ekanligi bevosita ko‘rinib turibdi. Demak, har qanday normalangan fazo metrik fazo bo‘ladi.
Aytaylik 𝑋 normalangan fazo bo‘lsin.
 elementning  > 0 atrofi deb, 𝑈 = {𝑥: ‖𝑥‖ < } to‘plamga aytiladi. Bu kiritilgan 𝑈 to‘plam, norma yordamida aniqlangan metrika tilida, markazi  nuqtada, radiusi  bo‘lgan ochiq shar deyiladi. Shuningdek, 𝑥 ∈ 𝑋 elementning  atrofi deb
𝑈𝑥 = 𝑥 + 𝑈 = {𝑥 + 𝑢, 𝑢 ∈ 𝑈} to‘plamga aytiladi.
Eslatib o‘tish lozim, 𝑉 = {𝑥: ‖𝑥‖ ≤ } to‘plam markazi  nuqtada, radiusi  bo‘lgan yopiq shar deyiladi. Kelgusida, 𝑋1 = {𝑥: ‖𝑥‖ ≤ 1} to‘plam 𝑋 normalangan fazoning birlik shari deyiladi.
Normalangan fazolar metrik fazolarning xususiy holi bo‘lgani uchun, normalangan fazolarning to‘la yoki to‘la emasligi haqida gap yuritish mumkin. Norma yordamida fazoning to‘laligi quyidagicha ifodalanadi:
Aytaylik 𝑋 normalangan fazoda {𝑥𝑛} ketma-ketlik berilgan bo‘lsin.
Ta’rif. Agar biror 𝑥 element uchun {‖𝑥𝑛 − 𝑥‖} sonli ketmaketlikning limiti 0 ga teng bo‘lsa, u holda {𝑥𝑛} ketma-ketlik 𝑥 ga yaqinlashadi deyiladi va 𝑥𝑛 → 𝑥 kabi belgilanadi. Shuningdek, agar {‖𝑥𝑛 − 𝑥𝑛+𝑚‖} sonli ketma-ketlikning limiti, ixtiyoriy m uchun 0 ga teng bo‘lsa, u holda {𝑥𝑛} ketmaketlik fundamental deyiladi. Agar X normalangan fazoda ixtiyoriy fundamental ketmaketlik yaqinlashuvchi bo‘lsa, u holda X to‘la normalangan fazo deyiladi. To‘la normalangan fazo qisqacha Banax fazosi yoki B-fazo deyiladi va normalangan fazolar ichida muhim rol o‘ynaydi.
Misollar. 1) Agar 𝑥 haqiqiy son uchun ‖𝑥‖ = |𝑥| deb olsak, u holda chiziqli fazo, ya’ni to‘g‘ri chiziq normalangan fazo bo‘ladi. 2) n o‘lchamli haqiqiy fazoda 𝑥 = ( , . . . , ) element uchun normani quyidagicha kiritamiz:

Bunda normaning 1, 2 shartlari bajarilishi ravshan, 3 shart esa Koshi – Bunyakovskiy tengsizligidan kelib chiqadi. Shu fazoning o‘zida quyidagi normalarni ham kiritish mumkin:


4) 𝑚 chiziqli fazoda = ( , . . . , ) elementining normasi deb

Songa aytamiz. Bu misol uchun norma aksiomalari bevosita tekshiriladi.

Download 48,78 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish