Matematik analiz” fani bo’yicha “chiziqli funksionallar va ularga bog’liq misollar yechish



Download 48,78 Kb.
bet3/5
Sana16.06.2022
Hajmi48,78 Kb.
#676073
1   2   3   4   5
Bog'liq
To\'raboyev kurs ishi

1.3 Evklid fazolari
Endi biz normalangan fazoning xususiy holi bo‘lgan va funksional analizda keng qo‘llaniladigan Evklid fazosini ko‘rib chiqamiz.
Ta’rif. Haqiqiy E chiziqli fazoning ixtiyoriy ikki 𝑥 va 𝑦 elementlari uchun aniqlangan, (𝑥, 𝑦) ko‘rinishida belgilanuvchi va quyidagi
1. (𝑥, 𝑦) = (𝑦, 𝑥);
2. ( + ,) = ( , 𝑦) + ( , 𝑦), , ∈ 𝐸;
3. (𝜆𝑥, 𝑦) = (𝑥, 𝑦), 𝜆 ∈ 𝑅;
4. (𝑥, 𝑥) ≥ 0; (𝑥, 𝑥) = 0 ⟺ 𝑥 = 𝜃
to‘rt shartni (aksiomalarini) qanoatlantiruvchi funksiya skalyar ko‘paytma deyiladi. Skalyar ko‘paytma kiritilgan chiziqli fazo Evklid fazosi deyiladi.
Misollar. 1) fazoda skalyar ko‘paytmani (𝑥, 𝑦)= kabi aniqlash mumkin.
2) fazoda skalyar ko‘paytma (𝑥, 𝑦)= kabi aniqlanadi.
Normaning birinchi sharti skalyar ko‘paytmaning to‘rtinchi aksiomasidan bevosita kelib chiqadi. Normaning ikkinchi sharti skalyar ko‘paytmaning uchinchi aksiomasi natijasidir. Haqiqatan,

Evklid fazosining ayrim xossalarini keltiramiz.
1-xossa. Agar → 𝑥, → 𝑦 norma ma’nosida yaqinlashsa, u holda
( , ) → (𝑥, 𝑦) bo‘ladi (skalyar ko‘paytmaning uzluksizligi).
Isbot. Koshi-Bunyakovskiy tengsizligiga asosan
|(𝑥, 𝑦) − ( , )| ≤ |(𝑥, 𝑦 − ) + (𝑥 − , )| ≤ |(𝑥, 𝑦 − )| + |(𝑥 − , )| ≤ ‖𝑥‖‖𝑦 − ‖ + ‖𝑥 − ‖‖ ‖
Yaqinlashuvchi { } ketma-ketlikning normasi chegaralangan bo‘lgani uchun oxirgi ifoda nolga intiladi.
2-xossa. Evklid fazosining ixtiyoriy 𝑥, 𝑦 elementlari uchun
‖𝑥 + 𝑦‖2+ ‖𝑥 − 𝑦‖2= 2(‖𝑥‖2 + ‖𝑦‖2) tenglik o‘rinli (parallelogramm formulasi).
Isbot. Haqiqatan, ‖𝑥 + 𝑦‖2+ ‖𝑥 − 𝑦‖2= (𝑥 + 𝑦, 𝑥 + 𝑦) + (𝑥 − 𝑦, 𝑥 − 𝑦) = (𝑥, 𝑥) + (𝑥, 𝑦) + (𝑦, 𝑥) + (𝑦, 𝑦) + (𝑥, 𝑥) − (𝑥, 𝑦) − (𝑦, 𝑥) + (𝑦, 𝑦) = 2((𝑥, 𝑥) + (𝑦, 𝑦)) = 2(‖𝑥‖2+ ‖𝑦‖2). 3-xossa. a) 𝑥⊥ va 𝑥⊥ munosabatlaridan 𝑥⊥(𝜆 +𝜇 ) munosabat kelib chiqadi (𝜆, 𝜇 -haqiqiy sonlar).
b) 𝑥⊥ (n=1,2,...) bo‘lib, { } ketma-ketlik y elementga yaqinlashsa, u holda 𝑥 ⊥ 𝑦 bo‘ladi.
4-xossa. Agar 𝑥 ⊥ 𝐴 bo‘lsa, u holda 𝑥⊥ bo‘ladi. E Evklid fazosining A to‘plamning har bir elementiga ortogonal bo‘lgan barcha elementlar to‘plamini bilan belgilaymiz.
5-xossa. Agar 𝐴 ⊂ 𝐸 bo‘lsa, u holda to‘plam E ning qism fazosi bo‘ladi.

Download 48,78 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish