Конспект лекций по дисциплине «Теория вероятностей и математическая статистика»


Тема 5: Непрерывные случайные величины



Download 0,79 Mb.
bet13/34
Sana25.05.2023
Hajmi0,79 Mb.
#943665
TuriКонспект
1   ...   9   10   11   12   13   14   15   16   ...   34
Bog'liq
11 Конспекты лекций

Тема 5: Непрерывные случайные величины.

Нормальный закон распределения


ПЛАН
1. Определение нормального закона распределения.
2. Формулы для определения вероятностей: а) попадания нормально распределенной случайной величины в заданный интервал; б) ее отклонения от математического ожидания. Правило трех сигм.
3. Центральная предельная теорема. Понятие о теореме Ляпунова.

1. Нормальный закон распределения


Для непрерывных случайных величин особо важное значение имеет нормальный закон распределения. Необходимо знать теоретико-вероятностный смысл его параметров, выражение функции распределения FN(x) через функцию Лапласа Ф(х), свойства нормально распределенной случайной величины, правило трех сигм, важно четко представлять, что нормальный закон, в отличие от других, является предельным законом, к которому при некоторых весьма часто встречающихся условиях приводит совокупное действие (сумма) п независимых случайных величин Х1, Х2, … , Хn при п.
Определение 1. Непрерывная случайная величина Х имеет нормальный закон распределения (закон Гаусса) с параметрами a и 2, если ее плотность вероятности имеет вид:
.
Многие величины подчиняются нормальному закону, например, рост человека, дальность полета снаряда и т.п.
Кривую нормального закона распределения называют нормальной кривой или гауссовой кривой.
Теорема 1. Математическое ожидание случайной величины Х, распределенной по нормальному закону, равно параметру а этого закона , т.е. M(X)=a , а ее дисперсия равна параметру 2 , т.е. D(X)=2.
Доказательство. Математическое ожидание случайной величины Х:


.
Первый интеграл равен нулю как интеграл от нечетной функции по симметричному промежутку. Второй интеграл – это интеграл Пуассона, равный .
Дисперсия случайной величины Х:



.
При изменении параметра a гауссова кривая параллельно смещается вдоль оси Ох.
При изменении параметра 2 изменяется ордината максимума гауссовой кривой.
Нормальный закон распределения случайной величины с параметрами a=0 и 2=1 называется стандартным (или нормированным), а соответствующая нормальная кривая – стандартной.

Функция распределения НСВ выражается через плотность вероятности по формуле .


Следовательно, функция распределения нормально распределенной случайной величины выражается по формуле , в которой подынтегральная функция не имеет первообразной функции, выражающейся через элементарные функции.
Поэтому ее выражают через функцию Лапласа , для которой составлены таблицы.
Теорема 1. Функция распределения случайной величины, распределенной по нормальному закону, выражается через функцию Лапласа (x) по формуле:
.
Доказательство.

,
так как .

Download 0,79 Mb.

Do'stlaringiz bilan baham:
1   ...   9   10   11   12   13   14   15   16   ...   34




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish