Kirisiw fundamental sheshim



Download 375,79 Kb.
bet3/8
Sana31.05.2023
Hajmi375,79 Kb.
#947137
1   2   3   4   5   6   7   8
Bog'liq
kurs jumisi Jasuebek.Allashukirov

Anıqlama. L operatordıń fundamental (elementar) sheshimi dep

teńlemeni qánaatlantıratuǵın ulıwmalasqan funksiyaǵa aytıladı.
Bizge málim, fundamental sheshim oǵan bir tekli Ly (x) = 0 teńlemeniń qálegen sheshimin qosqan menen ózgermeydi
Anıqlama. qosındı (eger ol ámeldegi bolsa) teńlemeni qanaatlandıradı
Haqıqatında da,

Misalı, teńlemeniń menshikli sheshimi bolıp

Yamasa

funkciya menshikli sheshimi bolıp tabıladı.
shárt orınlanǵanda, (1) teńleme degi L operatordıń fundamental sheshimi haqqında tómendegi anıqlama orınlı:
Anıqlama. (1) L operatordıń n ≥ 2 ushın fundamental sheshimi
tómendeginen ibarat : ε+ (x) = u (x), eger x > 0 hám ε+ (x) = 0, eger x < 0
bolsa ; bul jerde u(x) funksiya

baslang'ish shártlerdi qánaatlantıratuǵın bir tekli Lu (x) = 0 teńlemeniń menshikli sheshimi.
Anıqlama. Kórinip turıptı, olda, − bólekleri tegis regulyar ulıwmalasǵan funksiya hám ol ushın , shártler atqarıladı. Sonlıqtan, dıń klassik
tuwındıların figurali qawıslar menen belgilep,


......................................................................


Teńliklerge iye bolamız. Nátiyjede

Bul paragrafdıń sońǵı mısalındaǵı sinh(x) funksiya, joqarıdaǵı anıqlamanıń baslanǵısh shártlerin qánaatlantıratuǵın u(x) funksiya bolıp xızmet etedi.
Endi (1) teńleme ushın hám shártler orınlanǵanda bul

Koshidiń klassik máselesin qaraymız. Máseleniń sheshimin lar ushın quramız.
Tómendegi máseleni qóyamız : x > 0 larda (2) Koshi máselesiniń sheshimi
bolǵan hám x < 0 tarawǵa nolge teń etip (ulıwma alǵanda sıypaq emes )
dawam ettirilgen funksiya tabılsın. Tap sol tárzde funksiyanı
kiritemiz, biraq dawam ettirilgen funksiyalar ushın aldınǵı belgilewlerdi
qaldıramiz: . Bul ulıwmalasqan funksiyalar qanday teńlemeni qánaatlandırıwın kóremiz. Joqarıdaǵı sıyaqlı ulıwmalasqan tuwındıni esaplaymiz:


bu jerde figurali qawsirmalar menen klassik tuwındılar menen belgilengen bilan. Bu formulalardı (2) teńlemege qoyıp,
(3)
Teńliklerdi payda etemiz.
Menshikli tuwındılı differencial teńlemediń ulıwmalasqan sheshimi túsinigi. Fundamental sheshimleri.
oblastta m−tartibli sızıqlı
(4)
menshikli tuwındılı differencial teńlemeni qaraymız. koefficiyentler jeterlishe tegis funksiyalar bolsın.
Bizge belgili, bul teńlemediń klassik sheshimi dep Ω tarawda (4) teńlikti
qánaatlantıratuǵın barlıq tuwındıları menen úzliksiz bolǵan u (x)
funksiyaǵa aytıladı.
Anıqlamadan kórinip turıptı, olda, (4) teńlemediń hár qanday oń bólegi ushın da sheshim bar bola bermeydi. Sheshim bar bolıwı ushın f (x) funksiya hesh bolmaǵanda úzliksiz bolıwı zárúr. Differencial teńlemelerdiń nátiyjeni ámelde qollanıwı kózqarasınan bul talap júdá kóp jaǵdaylarda atqarılmaydı. f (x) funksiya fizikalıq processti qozǵawtıwshı sırtqı dereklerdi ańlatadı. Sol sebepli u, mısalı, úziliske ıyelewi múmkin. Kóbinese sırtqı derek de noqattıń qandayda bir átirapında jıynalǵan boladı. Bunday dereklerdi f (x) funksiya retinde δ (x – x0) delta-funksiyanı alıp modellestiriw qolaylı esaplanadı. Sol sebepli (4) teńlemeniń, ulıwma aytqanda, ulıwmalasǵan f (x) funksiyaǵa uyqas keliwshi sheshimin qaraw maqsetke muwapıq bolıp tabıladı. Kórinip turǵanınday , bunda sheshim de ulıwmalasqan funksiya boladı.
Bul funksiyalardı kiritemiz. Bunday
funksiyalar klasın D (Ω) menen belgileymiz. (4) teńlemeni φ(x) funksiyalarda
qaray, tómendegilerdi payda etemiz:



Download 375,79 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish