Ai va Aj sinflarning Ai+Aj yig‘indisi deb biz A0 va A1 sinflardan shunisini tushunamizki u, Ai sinfning har bir sonini Aj sinfning har bir soni bilan qo‘shishdan hosil bo‘lgan butun sonlarning hammasini o‘z ichida saqlasin.
Ai va Aj sinflarning AiAj ko‘paytmasi deb A0 va A1 sinflardan shunisini aytamizki, uning ichida Ai sinfning har bir sonini Aj sinfning har bir soni bilan ko‘paytirishdan hosil bo‘lgan hamma butun sonlar bo‘lsin.
Quyidagicha bo‘lishini ko‘rsatish qiyin emas
(9)
va
(10)
(9) tengliklarning to‘g‘riligi shundan ma’lumki, ikkita juft sonning yig‘indisi ham juft son, juft son bilan toq sonning yig‘indisi ham toqdir va hamma ikkita toq son yig‘indisi juft sondi. (10) tenglikning to‘g‘riligi ham shunga o‘xshash fikrlarga asoslanadi.
Shunday qilib, biz S to‘plamda ikkita algebraik amal tayinladik – sinflarni qo‘shish va ko‘paytirish. Bu amallar kommutativ, assotsiativ va distributiv qonunlarga bo’ysunadi, chunki bu amallar butun sonlarni arifmetik qo‘shish va ko‘paytirish amallarni bilan bog‘langandir, bular uchun esa yuqoridagi qonunlar to‘g‘ridir.
(9) tengliklardan bevosita ko‘rinadiki, A0 sinf S to‘plamning nolli elementi bo‘lib xizmat qiladi va S to‘plamning har bir elementi o‘z-o‘ziga qarama-qarshi (A0 sinf uchun A0 o‘zi qarama-qarshi, A1 uchun qarama-qarshi A1 ning o‘zidir). Demak, biz A0 sinfni 0 orqali belgilay olamiz. O‘z-o‘zidan ma’lumki, bundagi 0 to‘plam S ning nolli A0 elementining belgilanishi bo‘lib, 0 son emasdir.
Shunday qilib S to‘plam sinflarni qo‘shish va ko‘paytirish amallariga nisbatan kommutativ halqa tashkil qiladi. Biz hozir S ning maydon ekanligini ham ko‘ramiz.
Haqiqatan ham, (10) tengliklarga murojaat qilaylik. Ular har qanday a 0 va b uchun ax=b tenglamaning S ichida yechilishini ko‘rsatadi, masalan, A1 x = A0 tenglamaning yechilmasi x=A0 va A1x=A1 tenglamaning yechimi x=A1 bo‘ladi.
(10) tengliklardan ayonki, S maydonning birlik elementi A1 sinfdan iboratdir. Demak, biz uni e orqali belgilay olamiz.
Shunday belgilashlar natijasida (9) va (10) tengliklar quyidagi ko‘rinishni oladi:
(11)
Hozir tekshirilgan maydonga misol quyidagi tomondan o‘rnlidir. (11) tengliklardan bittasini, masalan e+e=0 ni olaylik. Endi a elementning ka karralisining ta’rifini eslasak biz e+e=0 tenglikni 2e=0 ko‘rinishda yozaolamiz. Bundan biz ko‘ramizki, birlik e elementining musbat ne karrasi nolga bo‘lgan maydonlar ham mavjud ekan.
Shunday qilib ikki tipdagi maydonlar bor: birlik e elementining faqat nolli qarrasi nolga teng bo‘lgan maydon va birlik e elementining faqat nolga teng bo‘lgan maydon. Ikkinchi tipdagi maydon uchun shunday butun musbat r son mavjud bo‘lishi kerakka, u son uchun re=0 bo‘lib, r dan kichik bo‘lgan har qanday butun musbat n son uchun ne nolga teng bo‘lmaydi. Biz shunday r sonni maydonning xarakteristikasi deb ataymiz va shunga ko‘ra ikkinchi tipdagi maydonlarni chekli xarakteristikaga ega bo‘lgan, yani r xarakteristikali maydonlar deymiz, birinchi tipdagi maydonlarni esa, nolli xarakteristikaga ega bo‘lgan maydonlar deymiz.
Chekli xarakteristikali maydonlar quyidagi xossalarga ega.
1.Agarda r maydon chekli r xarakteristikali bo‘lsa, u holda r tub son bo‘lishi kerak.
Isbot. Aksincha faraz etaylik, r - murakkab son bo‘lsin:
bundagi n1, n2 sonlar r dan kichik bo‘lgan butun musbat sondir. Distributiv qonunga asosan
bo‘ladi. bundan ushbu natija kelib chiqadi:
Lekin biz bilamizki, maydonda nolning bo‘luvchilari bo‘lmaydi. Shuning uchun yoki bo‘ladi, biroq bunday bo‘lishi mumkin emas, chunki ta’rif bo‘yicha r xarakteristika, tenglikni hosil qiladigan, butun musbat n sonlar orasidagi eng kichik sondir.
2. Chekli r xarakteristitkali r maydondan olingan ixtiyoriy a element uchun ra=0 bo‘ladi.
Isbot. a elementning musbat karrasi ta’rifiga muvofiq biz quyidagicha yoza olamiz
.
Nolni xarakteristikaga ega bo‘lgan maydonlarga murojaat qilib, ularning tubandagi xossalarini qayd qilib o‘tamiz.
Agar R nol xarakteristikali maydon, a-P ning elementi, k – butun son bo‘lsa, u holda ka=0 tenglik faqat a=0 yoki k=0 bo‘lganda va faqat shu holdagina bajariladi.
Haqiqatan ham, agar a=0 yoki k=0 bo‘lsa, shubhasiz ka ham nolga teng bo‘ldi.
Aksincha, faraz etaylik ka=0 bo‘lsin. U vaqtda k musbat yoki nolga teng bo‘lganda mana bu
hosil bo‘ladi, endi bundan, R maydonda nolning bo‘luvchilari bo‘lmaganligi uchun, a=0 yoki ke=0 kelib chiqadi. So‘nggi holda k nolga teng bo‘lishi kerak, chunki R maydonning xarakteristikasi nolga teng.
k manfiy yoki nolga teng bo‘lgan holda k=-n faraz etsak:
hosil bo‘ladi, bundan yoki , yani yoki kelib chiqadi.
3. misoldagi S maydonning xarakteristikasi 2 ga teng ekanligini ko‘rish mumkin. Ravshanki, hamma sonli maydonlar nol xarakteristikali maydonlardan iboratdir.
Maydonga tegishli yana bitta misolni ko‘rib chiqaylik.
4. M orqali ushbu
ko‘rinishga ega bo‘lgan hamma matritsalar to‘plamini belgilaymiz, bundagi a,b - turli haqiqiy sonlardir. Matritsalarni qo‘shish va ko‘paytirish amallariga nisbatan berilgan to‘plamning maydon tashkil qilishini ko‘rsatamiz.
Matritsalarni qo‘shish va ko‘paytirish amallarining bir qiymatli ekanligiga shubha yo‘q. Shuning uchun endi bu amallarning M to‘plam ichida bajarilishi mumkin ekanligini ko‘rsatamiz. M dan olingan ushbu ikkita ixtiyoriy
matritsalarni qo‘shsa va o‘zaro ko‘paytirsak mana bu natija
hosil bo‘ladi, bulardagi
yani biz o‘sha tipdagi matritsaga ega bo‘ldik.
Matritsalarni qo‘shish va ko‘paytirishnig assotsiativ va distributiv qonunlarga bo‘ysunishini, uning ustiga, matritsalarni qo‘shishning kommutativ qonunga bo‘ysunishini biz o‘z vaqtida aniqlab o‘tgan edik. SHuning uchun biz endi bu erda ko‘paytirishning kommutativ qonunga bo‘ysunishligini aniqlaymiz. Haqiqatan ham, buning to‘g‘riligiga ishonishi mumkin:
Tekshirilayotgan to‘plamning matritsalari orasida nolli matritsa ham bo‘ladi va har qanday
matritsa uchun teskari bo‘lgan
matritsa ham M to‘plamga qarashli bo‘ladi, chunki – A matritsa A kabi ko‘rinishga ega. Shunday qilib biz ko‘ramizki, matritsalarni qo‘shish va ko‘paytirish amallariga nisbatan M to‘plam kommutativ halqa tashkil qiladi.
Endi M dan olingan har qanday A 0 va V matritsalar uchun Ax=B tenglamaning M ichida yechilishi mumkin ekanligini ko‘rsatish qoladi. Bu esa, A 0 matritsaning maxsusmas ekanligidan kelib chiqadi. Darhakikat, A 0 bo‘lgani uchun A matritsaning a,b elementlaridan kamida bittasi noldan farq qiladi, shunga ko‘ra u matritsaning ushbu
determinanti nolga teng bo‘lmaydi.
A 0 maxsusmas matritsa bo‘lgani uchun unga teskari bo‘lgan matritsa, albatta, bor. Shuni topamiz:
bundagi
.
Ko‘ramizki, M to‘plamga tegishli matritsa kelib chiqdi. Endi biz tenglamamizning yechimini yoza olamiz. Bu esa x=A-1B dan iborat bo‘lib, shubhasiz, A-1B yana M to‘plamga qarashlidir, chunki A-1 va B matritsalar M ga qarashlidir. Binobarin, biz ko‘rsatdikki, matritsalarni qo‘shish va ko‘paytirishga nisbatan M to‘plam maydonni tashkil qiladi.
Maydon tushunchasi bizga nima beradi? Bu tushuncha hamma natijalarini har qanday maydonga tarqatishga yo‘l ochadi. Determinantlar nazariyasi, chiziqli tenglamalar nazariyasi, chiziqli almashtirmalar va matritsalar nazariyasi, n- o‘lchovli vektorial fazolar va ularning chiziqli almashtirmalari nazariyasi – kompleks sonlar maydoni uchun bayon qilingan mana shu nazariyalarning hammasi hech qanday o‘zgarishsiz ixtiyoriy R maydonga o‘tkazilishlari mumkin faqat bu joyda sonlar to‘g‘risida emas, balki tekshirilayotgan R maydonning elementlari to‘g‘risida so‘zlashga to‘g‘ri keladi. Bu, albatta tushunarlik bir narsa, chunki isbotimiz maydonning algebraik amallarining umumiy xossalariga asoslangan edi.
Hozirgi aytilgan fikrimizga qo‘shimcha qilib shuni qayd qilib o‘tamizki, ai koordinatalari R maydondan olingan n- o‘lchovli vektorni R maydon ustidagi n- o‘lchovli vektor va shunday vektorlarning to‘plamini R maydon ustidagi n- o‘lchovli vektorial fazo deb aytish qabul qilingan.
Algebraning asosiy vazifasi algebraik amallarning xossalarini o‘rganishdan iborat ekanligini eslatib o‘tgan edik. Algebraik nuqtai nazardan o‘rnashtirilgan amalga nisbatan o‘zlarini bir xilda olib boradigan to‘plamlar orasida hech qanday farq yo‘q, ularni aynan bir xil deb hisoblash mumkin.
Do'stlaringiz bilan baham: |