История появления натуральных чисел и нуля. Теоретико-множественное определение натурального числа и нуля. Теоретико-множественное определение сложения и разности целых неотрицательных чисел. Свойства сложения



Download 1,03 Mb.
bet51/60
Sana21.02.2022
Hajmi1,03 Mb.
#40272
TuriЛекция
1   ...   47   48   49   50   51   52   53   54   ...   60
Bog'liq
Лекция1

Свойства делимости


Делимость обладает рядом характерных свойств. Перечислим и обоснуем основныесвойства делимости, которые следуют из понятия делимости и свойств операций над целыми числами.



  1. Любое целое число a делится на число a, на число −aпротивоположное числу a, на единицу и на число −1.

Докажем это свойство делимости.
Для любого целого числа a справедливы равенства a=a·1 и a=1·a, из которых следует, что a делится на a, причем частное равно единице, и что aделится на 1, причем частное равно a. Для любого целого числа a также справедливы равенства a=(−a)·(−1) и a=(−1)·(−a), из которых следует делимость a на число, противоположное числу a, а также делимость a на минус единицу.
Отметим, что свойство делимости целого числа a на себя называют свойством рефлексивности.

  1. Следующее свойство делимости утверждает, что нуль делится на любое целое число b.

Действительно, так как 0=b·0 для любого целого числа b, то нуль делится на любое целое число.
В частности, нуль делится и на нуль. Это подтверждает равенство 0=0·q, гдеq – любое целое число. Из этого равенства вытекает, что частным от деления нуля на нуль является любое целое число.
Также нужно отметить, что на 0 не делится никакое другое целое число a, отличное нуля. Поясним это. Если бы нуль делил целое число a, отличное от нуля, то должно было бы быть справедливо равенство a=0·q, где q – некоторое целое число, а последнее равенство возможно только при a=0.

  1. Если целое число a делится на целое число b и модуль числа a меньше модуля числа b, то a равно нулю. В буквенном виде это свойство делимости записывается так: если ab и , то a=0.

Доказательство.
Так как a делится на b, то существует целое число q, при котором верно равенство a=b·q. Тогда должно быть справедливо и равенство , а в силу свойств модуля числа должно быть справедливо и равенство вида . Если q не равно нулю, то , откуда следует, что . Учитывая полученное неравенство, из равенства  следует, что . Но это противоречит условию . Таким образом, q может быть равно только нулю, при этом получим a=b·q=b·0=0, что и требовалось доказать.

  1. Если целое число a отлично от нуля и делится на целое число b, то модуль числа a не меньше модуля числа b. То есть, если a≠0 и ab, то . Это свойство делимости непосредственно вытекает из предыдущего.

  2. Делителями единицы являются только целые числа 1 и −1.

Во-первых, покажем, что единица делится на 1 и на −1. Это следует из равенств 1=1·1 и 1=(−1)·(−1).
Осталось доказать, что никакое другое целое число не является делителем единицы.
Предположим, что целое число b, отличное от 1 и −1, является делителем единицы. Так как единица делится на b, то в силу предыдущего свойства делимости должно выполняться неравенство , которое равносильно неравенству . Этому неравенству удовлетворяют только три целых числа: 10, и −1. Так как мы приняли, что b отлично от 1 и −1, то остается лишь b=0. Но b=0 не может быть делителем единицы (что мы показали при описании второго свойства делимости). Этим доказано, что никакие числа, отличные от 1 и −1, не являются делителями единицы.

  1. Чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы модуль числа a делился на модуль числа b.

Докажем сначала необходимость.
Пусть a делится на b, тогда существует такое целое число q, что a=b·q. Тогда. Так как  является целым числом, то из равенства следует делимость модуля числа a на модуль числа b.
Теперь достаточность.
Пусть модуль числа a делится на модуль числа b, тогда существует такое целое число q, что . Если числа a и b положительные, то справедливо равенство a=b·q, которое доказывает делимость a на b. Если aи b отрицательные, то верно равенство −a=(−b)·q, которое можно переписать как a=b·q. Если a – отрицательное число, а b – положительное, то имеем−a=b·q, это равенство равносильно равенству a=b·(−q). Если a – положительное, а b – отрицательное, то имеем a=(−b)·q, и a=b·(−q). Так как и q и −q являются целыми числами, то полученные равенства доказывают, что a делится на b.
Следствие 1.
Если целое число a делится на целое число b, то a также делится на число−b, противоположное числу b.
Следствие 2.
Если целое число a делится на целое число b, то и −a делится на b.
Важность только что рассмотренного свойства делимости сложно переоценить - теорию делимости можно описывать на множестве целых положительных чисел, а это свойства делимости распространяет ее и на целые отрицательные числа.

  1. Делимость обладает свойством транзитивности: если целое число a делится на некоторое целое число m, а число m в свою очередь делится на некоторое целое число b, то a делится на b. То есть, если am и mb, то ab.

Приведем доказательство этого свойства делимости.
Так как a делится на m, то существует некоторое целое число a1 такое, чтоa=m·a1. Аналогично, так как m делится на b, то существует некоторое целое число m1 такое, что m=b·m1. Тогда a=m·a1=(b·m1)·a1=b·(m1·a1). Так как произведение двух целых чисел является целым числом, то m1·a1 - это некоторое целое число. Обозначив его q, приходим к равенству a=b·q, которое доказывает рассматриваемое свойство делимости.

  1. Делимость обладает свойством антисимметричности, то есть, если a делится на b и одновременно b делится на a, то равны либо целые числа a и b, либо числа a и −b.

Из делимости a на b и b на a можно говорить о существовании целых чиселq1 и q2 таких, что a=b·q1 и b=a·q2. Подставив во второе равенство b·q1вместо a, или подставив в первое равенство a·q2 вместо b, получим, чтоq1·q2=1, а учитывая, что q1 и q2 – целые, это возможно лишь при q1=q2=1или при q1=q2=−1. Отсюда следует, что a=b или a=−b (или, что то же самое,b=a или b=−a).

  1. Для любого целого и отличного от нуля числа b найдется такое целое числоa, не равное b, которое делится на b.

Таким числом будет любое из чисел a=b·q, где q – любое целое число, не равное единице. Можно переходить к следующему свойству делимости.

  1. Если каждое из двух целых слагаемых a и b делится на целое число c, то сумма a+b также делится на c.

Так как a и b делятся на c, то можно записать a=c·q1 и b=c·q2. Тогдаa+b=c·q1+c·q2=c·(q1+q2) (последний переход возможен в силураспределительного свойства умножения целых чисел относительно сложения). Так как сумма двух целых чисел является целым числом, то равенство a+b=c·(q1+q2) доказывает делимость суммы a+b на c.
Это свойство можно распространить на сумму трех, четырех и большего количества слагаемых.
Если еще вспомнить, что вычитание из целого числа a целого числа bпредставляет собой сложение числа a с числом −b (смотрите правило вычитания целых чисел), то данное свойство делимости справедливо и для разности чисел. Например, если целые числа a и b делятся на c, то разностьa−b также делится на с.

  1. Если известно, что в равенстве вида k+l+…+n=p+q+…+s все члены, кроме какого-то одного, делятся на некоторое целое число b, то и этот один член делится на b.

Допустим, этим членом является p (мы можем взять любой из членов равенства, что не повлияет на рассуждения). Тогда p=k+l+…+n−q−…−s. Выражение, получившееся в правой части равенства, делится на b в силу предыдущего свойства. Следовательно, число p также делится на b.

  1. Если целое число a делится на целое число b, то произведение a·k, где k – произвольное целое число, делится на b.

Так как a делится на b, то справедливо равенство a=b·q, где q – некоторое целое число. Тогда a·k=(b·q)·k=b·(q·k) (последний переход осуществлен в силу сочетательного свойства умножения целых чисел). Так как произведение двух целых чисел есть целое число, то равенство a·k=b·(q·k)доказывает делимость произведения a·k на b.
Следствие: если целое число a делится на целое число b, то произведениеa·k1·k2·…·kn, где k1k2, …, kn – некоторые целые числа, делится на b.

  1. Если целые числа a и b делятся на c, то сумма произведений a·u и b·v видаa·u+b·v, где u и v – произвольные целые числа, делится на c.

Доказательство этого свойства делимости аналогично двум предыдущим. Из условия имеем a=c·q1 и b=c·q2. Тогдаa·u+b·v=(c·q1)·u+(c·q2)·v=c·(q1·u+q2·v). Так как сумма q1·u+q2·v является целым числом, то равенство вида a·u+b·v=c·(q1·u+q2·v) доказывает, чтоa·u+b·v делится на c.
На этом закончим обзор основных свойств делимости.



Download 1,03 Mb.

Do'stlaringiz bilan baham:
1   ...   47   48   49   50   51   52   53   54   ...   60




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish