Investments, tenth edition


Hedge Ratios and the Black-Scholes Formula



Download 14,37 Mb.
Pdf ko'rish
bet919/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   915   916   917   918   919   920   921   922   ...   1152
Bog'liq
investment????

   Hedge Ratios and the Black-Scholes Formula 

 In the last chapter, we considered two investments in FinCorp stock: 100 shares or 1,000 

call options. We saw that the call option position was more sensitive to swings in the stock 

price than was the all-stock position. To analyze the overall exposure to a stock price more 

precisely, however, it is necessary to quantify these relative sensitivities. We can summa-

rize the overall exposure of portfolios of options with various exercise prices and times to 

expiration using the    hedge  ratio    ,  the change in option price for a $1 increase in the stock 

price. A call option, therefore, has a positive hedge ratio and a put option a negative hedge 

ratio. The hedge ratio is commonly called the option’s    delta    .  

 If you were to graph the option value as a function of the stock value, as we have done 

for a call option in  Figure 21.9 , the hedge ratio is simply the slope of the curve evaluated 

at the current stock price. For example, suppose the slope of the curve at  S  

0

   5  $120  equals  .60. 



As the stock increases in value by $1, the option increases by approximately $.60, as the 

figure  shows.   

For every call option written, .60 share of stock would be needed to hedge the investor’s 

portfolio. If one writes 10 options and holds six shares of stock, according to the hedge ratio 

of .6, a $1 increase in stock price will result in a gain of $6 on the stock holdings, whereas 

the loss on the 10 options written will be 10   3  $.60, an equivalent $6. The stock price 

movement leaves total wealth unaltered, which is what a hedged position is intended to do. 

 Black-Scholes hedge ratios are particularly easy to compute. The hedge ratio for a call is 

 N ( d  

1

 ), whereas the hedge ratio for a put is  N ( d  



1

 )  2  1. We defined  N ( d  

1

 ) as part of the Black-



Scholes formula in Equation 21.1. Recall that  N ( d ) stands for the area under the standard 

normal curve up to  d.  Therefore, the call option hedge ratio must be positive and less than 

1.0, whereas the put option hedge ratio is negative and of smaller absolute value than 1.0. 

bod61671_ch21_722-769.indd   746

bod61671_ch21_722-769.indd   746

7/27/13   1:45 AM

7/27/13   1:45 AM

Final PDF to printer




  C H A P T E R  

2 1


 Option 

Valuation

747

  Figure  21.9  verifies that the slope of the 



call option valuation function is less than 

1.0, approaching 1.0 only as the stock price 

becomes much greater than the exercise price. 

This tells us that option values change less 

than one-for-one with changes in stock prices. 

Why should this be? Suppose an option is so 

far in the money that you are absolutely cer-

tain it will be exercised. In that case, every 

dollar increase in the stock price would 

increase the option value by $1. But if there is 

a reasonable chance the call option will expire 

out of the money, even after a moderate stock 

price gain, a $1 increase in the stock price will 

not necessarily increase the ultimate payoff 

to the call; therefore, the call price will not 

respond by a full dollar. 

 The fact that hedge ratios are less than 1.0 

does not contradict our earlier observation 

that options offer leverage and disproportion-

ate sensitivity to stock price movements. Although  dollar  movements in option prices 

are less than dollar movements in the stock price, the  rate of return  volatility of options 

remains greater than stock return volatility because options sell at lower prices. In our 

example, with the stock selling at $120, and a hedge ratio of .6, an option with exercise 

price $120 may sell for $5. If the stock price increases to $121, the call price would be 

expected to increase by only $.60 to $5.60. The percentage increase in the option value is 

$.60/$5.00  5  12%, however, whereas the stock price increase is only $1/$120  5  .83%.  The 

ratio of the percentage changes is 12%/.83%  5  14.4. For every 1% increase in the stock 

price, the option price increases by 14.4%. This ratio, the percentage change in option 

price per percentage change in stock price, is called the  option elasticity.  

 The hedge ratio is an essential tool in portfolio management and control. An example 

will show why.   

 

 



Value of a Call (C)

S

0

 



40

20

0



120

Slope 


5 .6


Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   915   916   917   918   919   920   921   922   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish