Investments, tenth edition



Download 14,37 Mb.
Pdf ko'rish
bet917/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   913   914   915   916   917   918   919   920   ...   1152
Bog'liq
investment????

  Put Option Valuation 

 

We have concentrated so far on call option valuation. We can derive Black-Scholes 



European put option values from call option values using the put-call parity theorem. 

To value the put option, we simply calculate the value of the corresponding call option in 

Equation 21.1 from the Black-Scholes formula, and solve for the put option value as 

   


 1 PV(X) 2 S

0

 



 

 5 Xe

2rT

S

0

  

(21.2)  



We calculate the present value of the exercise price using continuous compounding to be 

consistent with the Black-Scholes formula. 

 Sometimes, it is easier to work with a put option valuation formula directly. If we sub-

stitute the Black-Scholes formula for a call in Equation 21.2, we obtain the value of a 

European put option as 

 

  Xe



2rT

31 2 N(d

2

)

4 2 S



0

31 2 N(d

1

)

4  



(21.3)   

 Using data from Example 21.4 ( C   5  $13.70,  X   5  $95,  S   5  $100,  r   5  .10,  s   5  .50, and 

 T   5  .25), Equation 21.3 implies that a European put option on that stock with identical 

exercise price and time to expiration is worth 

$95e

2

.10 3 .25



(1 2 .5714) 2 $100(1 2 .6664) 5 $6.35

 Example  21.5 

Black-Scholes Put Valuation 

  

15

 An exact formula for American call valuation on dividend-paying stocks has been developed in Richard Roll, 



“An Analytic Valuation Formula for Unprotected American Call Options on Stocks with Known Dividends,” 

 Journal of Financial Economics 

 5 (November 1977). The technique has been discussed and revised in 

Robert Geske, “A Note on an Analytical Formula for Unprotected American Call Options on Stocks with Known 

Dividends,”  Journal of Financial Economics  7 (December 1979), and Robert E. Whaley, “On the Valuation of 

American Call Options on Stocks with Known Dividends,”  Journal of Financial Economics  9 (June 1981). 

bod61671_ch21_722-769.indd   745

bod61671_ch21_722-769.indd   745

7/27/13   1:45 AM

7/27/13   1:45 AM

Final PDF to printer



746 

P A R T   V I

  Options, Futures, and Other Derivatives


Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   913   914   915   916   917   918   919   920   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish