Элементы математической статистики



Download 479 Kb.
bet6/10
Sana25.03.2022
Hajmi479 Kb.
#509880
1   2   3   4   5   6   7   8   9   10
Bog'liq
2 Matematicheskaya statistika lektsii

Теорема 1. Выборочная средняя ХВ является несмещенной и состоятельной оценкой математического ожидания.
Доказательство. Пусть выборка репрезентативна, т. е.. все элементы генеральной совокупности имеют одинаковую возможность попасть в выборку. Значения признака х1, х2, х3,...,хn можно принять за независимые случайные величины Х1, Х2, Х3, ...,Хn с одинаковыми распределениями и числовыми характеристиками, в том числе с равными математическими ожиданиями, равными а,

Так как каждая из величин Х1, Х2, Х3, …, Хп имеет распределение, совпадающее с распределением генеральной совокупности, то М(Х) = а. Поэтому

Далее, на основании закона больших чисел имеем

откуда следует, что – состоятельная оценка М(Х).
Используя правило исследования на экстремум, можно доказать, что является и эффективной оценкой М(Х).
В качестве оценки дисперсии изучаемого признака в генеральной совокупности D(Х) принимается исправленная дисперсия.
Теорема 2. Исправленная выборочная дисперсия является несмещенной и состоятельной оценкой дисперсии D(Х).
1.7. ДОВЕРИТЕЛЬНЫЕ ИНТЕРВАЛЫ И ДОВЕРИТЕЛЬНЫЕ ВЕРОЯТНОСТИ
Теоремы 1 и 2 хотя и являются общими, т. е. сформулированы при достаточно широких предположениях, они не дают возможности установить, насколько близки оценки к оцениваемым параметрам. Из факта, что —оценки являются состоятельными, следует только то, что при увеличении объема выборки значение P(|θ* – θ| < δ), δ < 0, приближается к 1.
Возникают следующие вопросы.

  1. Каким должен быть объем выборки п, чтобы заданная точность
    |θ* – θ| = δ была гарантирована с заранее принятой вероятностью?

  2. Какова точность оценки, если объем выборки известен и вероятность безошибочности вывода задана?

  3. Какова вероятность того, что при заданном объеме выборки будет обеспечена заданная точность оценки?

Введем несколько новых определений.
Определение. Вероятность γ выполнения неравенства, |θ*– θ| < δ называется доверительной вероятностью или надежностью оценки θ.
(1)
Перейдем от неравенства |θ*–θ| < δ к двойному неравенству. Известно, что . Поэтому доверительную вероятность можно записать в виде
(2)
Так как θ (оцениваемый параметр) – число постоянное, а θ* – величина случайная, понятие доверительной вероятности сформулировать так: доверительной вероятностью γ называется вероятность того, что интервал (θ*– δ, θ*+ δ) накрывает оцениваемый параметр.
Определение. Случайный интервал (θ*–δ, θ*+δ), в пределах которого с вероятностью γ находится неизвестный оцениваемый параметр, называется доверительным интервалом İ, соответствующим коэффициенту доверия γ,
İ=(θ*– δ, θ*+ δ). (3)
Надежность оценки γ может задаваться заранее, тогда, зная закон распределения изучаемой случайной величины, можно найти доверительный интервал İ. Решается и обратная задача, когда по заданному İ находится соответствующая надежность оценки.
Пусть, например, γ = 0,95; тогда число р = 1 – у = 0,05 показывает, с какой вероятностью заключение о надежности оценки ошибочно. Число р=1–γ называется уровнем значимости. Уровень значимости задается заранее в зависимости от конкретного случая. Обычно р принимают равным 0,05; 0,01; 0,001.
Выясним, как построить доверительный интервал для математического ожидания нормально распределенного признака. Было показано, что

Оценим математическое ожидание с помощью выборочной средней учитывая, что также имеет нормальное распределение. Имеем
(4)
а по формуле (12.9.2) получаем

Принимая во внимание (13.5.12), получим
(5)
Пусть известна вероятность γ. Тогда

Для удобства пользования таблицей функции Лапласа положим тогда а

(6)
Интервал
(7)
накрывает параметр а = М(Х) с вероятностью γ.
В большинстве случаев среднее квадратическое отклонение σ(Х) исследуемого признака неизвестно. Поэтому вместо σ(Х) при большой выборке (n > 30) применяют исправленное выборочное среднее квадратическое отклонение s, являющееся, в свою очередь оценкой σ(X), доверительный интервал будет иметь вид
İ =

Download 479 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish