Aniqmas integrallarni hisoblash



Download 466,5 Kb.
bet1/7
Sana15.04.2022
Hajmi466,5 Kb.
#554852
  1   2   3   4   5   6   7
Bog'liq
Robiya


Aniqmas integrallarni hisoblash

REJA:



I.KIRISH
1. Masalaning qo`yilishi.
2. Hisoblash xatosi va yaqinlashish.
3. Jadval ko`rinishida berilgan funksiyalarni integrallash.
II.XULOSA
III.ADABIYOTLAR
`


1. Agar f(x) funksiya [х0, x] oraliqda uzluksiz bo`lsa, u holda boshlang`ich funksiyani quyidagicha tasvirlash mumkin:
(12.1)
Demak boshlang`ich funksiyani topish integralning qiymatlarini topish bilan teng kuchlidir. Volterra integral tenglamasi

da ushbu
(12.2)
integral bilan ish ko`rishga to`g`ri keladi. Biz faqat boshlang`ich funksiyani hisoblash bilan shug`ullanamiz. Integralning yuqori chegarasi o`zgaruvchi bo`lgani va y(x) ning ko`p nuqtalardagi qiymatlarini topishga ehtiyoj tug`ilishi tufayli aniqmas integrallarni hisoblash masalasi o`ziga xos bo`lib, ular uchun maxsus usullar yaratishga to`g`ri keladi.
Faraz qilaylik, (12.1) integralning qiymatini argumentning х= х0, х,, х2, ... qiymatlari uchun hisoblash talab qilinsin. Aytaylik, х= х0, х,, х2, ... topilgan bo`lib, уп+1 ni topish kerak bo`lsin. Buning uchun у(х) ning avval topilgan mavjud qiymatlaridan foydalanish mumkin. Biz avval f(x) formula yordamida (ya`ni uning istalgan qiymatini topish mumkin bo`lgan) aniqlangan holni qaraymiz. Paragraf oxirida esa f(x) jadval bilan berilgan holni ko`rib o`tamiz. Ko`pincha f(x) ning qiymatini kerakli x nuqtalarda hisoblab, уп+1 ni istalgan aniqlikda topish mumkin bo`ladi. Bu yerda y(x) ning ko`p qiymatlarini topish lozim bo`lgani uchun f ning har bir qiymatidan y(x) ning bir necha qiymatlarini topishda foydalanish mumkin. Buni quyidagi misolda ko`rish mumkin: уп+1 ni hisoblashda
(12.3)
tenglikdan foydalanish mumkin. O`ng tomondagi integralni hisoblashdan aniq integral uchun qurilgan formulalarning birortasidan foydalanish mumkin. Lekin bu usul quyidagi ko`rinib turgan nuqsonga ega: f ning qiymatlari, agar ular [хп, хn+1]
ning chetki nuqtalariga mos kelmasa, faqat yn+1 ni hisoblashda foydalanib, avvalgi уп, уп1, ... va keyingi уп+2, yn+v ... larni hisoblashda qatnashmaydi.
Kelgusida f ning qiymatlarini hisoblashning bir necha qadamlarida ishlatishga imkon beradigan usullar haqida so`z yuritiladi.
Aniqmas integralni topishda foydalaniladigan integrallash qoidasi muvaffakiyatsiz tanlangan bo`lsa, hisoblash xatolari yig`ilib bir necha qadamdan keyin keraklisidan katta bo`lib ketishi mumkin. Xuddi shu holni misolda ko`raylik. Faraz qilaylik, уп+1 ni hisoblash uchun oldingi уп-х va уп qiymatlar hamda hosilaning ikkita у`n-1 = fn-1 va у`п = f qiymatlari asosida interpolyatsiyadan foydalanaylik. Bu yerda ikkita ikki karrali tugunlarga ega bo`lganimiz uchun Ermit formulasidan foydalanishimiz mumkin va qoldiq hadni tashlab quyidagi integrallash qoidasiga ega bo`lamiz:
(12.4)
Bu tenglik barcha uchinchi tartibli ko`p hadlar uchun aniqdir. Bu formula bir marta qo`llashda yaxshi natija beradi, lekin ko`p marta qo`llash uchun esa xato tez ortib borishi sababli yaroqsizdir.
Faraz qilaylik, f ning barcha qiymatlari va уn-1 aniq hisoblangan bo`lib, уп ni hisoblashda xatoga (masalan, yaxlitlash hisobidan) yo`l qo`yilgan bo`lsin. Birinchi bobda hisoblash jarayoni uchun ko`rganimizdek bu xato уп+1, уп+2, уп+3, ... larni topishda ularga mos ravishda, kabi o`sa borib noturg`unlik yuz beradi. Keyingi punktda yn+k ni topishda bu xato qonuniyat bilan o`sishini ko`ramiz. Bundan (12.4) formulaning hisoblash uchun yaroqsizligi ma`lum bo`ladi. Uning o`rniga, (12.3) integralni trapetsiya formulasi bilan hisoblasak formulaga ega bo`lamiz. Bu formulaning algebraik aniqlik darajasi birga teng bo`lsa ham, ko`p martalab qo`llash uchun qulaydir, chunki xato jamlanmaydi. Ko`p martalab qo`llaniladigan qoidalarning turgunliklariga katta e`tibor berish lozim. Bu masalalarni keyingi punktda ko`rib o`tamiz.

Download 466,5 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish