Аллакова Дилбар


MAVZUNI MUSTAXKAMLASH UCHUN SAVOLLAR



Download 0,82 Mb.
bet17/27
Sana02.01.2022
Hajmi0,82 Mb.
#307935
1   ...   13   14   15   16   17   18   19   20   ...   27
Bog'liq
Termiz davlat universiteti fizika- matematika fakulteti matemati

MAVZUNI MUSTAXKAMLASH UCHUN SAVOLLAR

1). 1 va 2 o'lchovli arifmetik fazolarga misollar keltiring .

2). n o'lchovli arifmetik fazo deganda nimani tushunasiz?

3). 3 o'lchovli arifmetik fazoga misollar keltiring.

4). Chiziqli bog'langan vektorlar sistemasiga ta'rif bering.

5). Chiziqli bog'lanmagan vektorlar sistemasiga ta'rif bering.


13 -MA'RO'ZA

MAVZU: VEKTORLAR SISTEMASINING RANGI VA BAZISI

REJA:

1. Vektorlarning ekvivalent sistemalari .

2 . Vektorlar sistemasidagi element almashtirishlar .

3. Chekli sondagi vektorlar sistemasining bazisi .

4. Chekli sondagi vektorlar sistemasining rangi .

ADABIYOTLAR [ 1, 2, 3,].


n- o'lchovli arifmetik fazo Rn dagi vektorlar S={a1, a2 , . . . , ak } ва T =

={ b1 , b2 , . . . , bs} sistemalari berilgan bo'lsin .

Agar S sistemadagi har bir vektorni T sistemasidagi vektorlarning chiziqli kombinasiyasi ko'rinishida va aksincha T sistemadagi har bir vektorni S sistemalagi vektorlarning chiziqli kombinasiyasi ko'rinishda ifodalash mumkin bo'lsa, S vaT vektorlar sistemalariga ekvivalent vektorlar sistemalari deyiladi va S ~T ko'rinishda yeziladi. ~ munosabat binar munosabat bo'lib, refleksiv (S~S), simmetrik (S ~T T~S) va tranzitiv (S~T ва T~L 

S~L) lik xossalariga bo'ysunadi, ya'ni ekvivalentlik munosabati bo'ladi .

Xossalari. 1. Ikkita sistemaning ekvivalent bo'lishi uchun ularning chiziqli qobiqlarining teng bo'lishi zarur va yetarlidir .

Isboti. S~T bo'lsin, L (S )=L (T) ekanligini ko'rsatamiz. S~T  aS  a L (T), ya'ni L (S)  L (T).

Agarda  b L(T ), u holda T~S bo'lgani uchun b L(S ); ya'ni L(T) L (S) . Demak, L(S ) L(T ) .

Agar L (S)= L(T) bo'lsa, S~T ekanligi ta'rifdan bevosita kelib chiqadi.

2. Agar ikkita vektorlarning chekli sistemalari o'zaro ekvivalent bo'lib, chiziqli erkli bo'lsa, ular bir xil sondagi vektorlardan to'zilgan bo'ladi.



Isboti. Agar ikkala vektorlar sistemalari bo'sh bo'lsa, teorema o'rinli. Faraz etaylik

u1 , u2 , . . . , un ва v1 , v2 , . . . , vs lar ekvivplent sistemalar bo'lib har biri chiziqli bog'lanmagan bo'lsin. U holda ilgarigi mavzudagi ikkinchi natijaga ko'ra r s va s r bo'lib, bo'lardan r=s kelib chiqadi.

Chekli vektorlar sistemasidagi elementar almashtirishlar deb quyidagilarga aytiladi:

1). Sistemadagi biror vektorni  songa ko'paytirish;

2). Sistemadagi biror vektorni  ga ko'paytirib ikkinchi bir vektorga qo'shish;

3). Sistemadan nol vektorni chiqarib tashlash yoki nol vektorni qo'shish.

1) va 2)-elementar almashtirishlarga xosmas, 3) ga esa xos almashtirish deyiladi.



1-teorema. Agar chekli sondagi vektorlarning biror sistemasi ikkinchi bir vektor sistemasidan element almashtirishlar yordamida hosil qilingan bo'lsa, bu ikki sistema o'zaro ekvivalent bo'ladi.

Isboti. Faraz etaylik ,

a1, a2 , . . . , am (1)

vektorlar sistemasi berilgan bo'lsin . Agar yangi sistema (1) dan 1) almashtirish natijasida hosil qilingan bo'lsa , u holda

a1, a2 , . . . , am (2)

sistema hosil bo'ladi va (1) hamda (2) larning ekvivalent ekanligi ta'rifdan bevosita kelib chiqadi . Agar yangi sistema




Download 0,82 Mb.

Do'stlaringiz bilan baham:
1   ...   13   14   15   16   17   18   19   20   ...   27




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish