4-misol. a) ln 10 = = =2,30259...;
lge = = = 0,43429...
5-misol. a) lg100067 ; b) lne4,8 larni hisoblang.
Yechish: a) lg l00067 = lg103*67 = lg 10201 = 201*lg10 = 201*1=201;
b) lne4,8 = 4,81ne = 4,8*1=4,8.
6-misol. Jadvalda lg3 = 0,4771 ekanligi berilgan.
a) lg270 ni; b) 31000 ni toping.
Yechish: a) lg270 = lg33*10 = 31g3 + lg10 = 3*0,4771 + 1 = 2,4313.
b) 31000 = x deb, bu tenglikni logarifmlasak, lgx =1000 lg3= 477,1 yoki bundan x=10477,1 hosil bo'ladi.
Demak, 31000 = 10477,1 =1000...0. 477 ta
Mashqlar:
1. a>0, a 1 bo'lsa, ifodaning qiymatini toping:
a) loga3a; b) log a4 a1/3 ; d) log1/a a7;
e) log ; f) loga-1 , g) loga2 a-5.
2. x ni toping:
a) log0,1 x = -2; b) log36 x =1/2; d) logx 9 = -l; e) log 8 = 3.
4. Hisoblang:
a) log 81; b) log16 ; d) log0,001 ;
e) log 1/64 ; f) (log2log4log816)*101/2 lg4-lg 2+lg 0,1 ;
g) log23*log34*log45*log56*log65*log54*log43*log32; j) lg6; k) lg72.
5. Agar: a) log68 = c bo'lsa, log2472; b) log368 = b bo'lsa, log369;
d) log10009 = a va log10004 = b bo'lsa, log56 ni toping.
6. Tengsizlik a ning qanday qiymatlarida o'rinli:
a) log5a < log53a; b) log0,6a > log0,6 a/2; d) loga a2,2 ?
7.Funksiyalarning va ularga teskari funksiyalarning aniqlanish sohalarini toping:
a) y =lg(x2 + 6x); b) y = lg(103x +3); d) y = log2 (x-8) + log2 (8-x).
4. Ko'rsatkichli va logarifmik ifodalarni ayniy almashtirishlar.
Oldingi bandlarda logarifmning va logarifmik funksiyaning, shuningdek, darajaning va ko'rsatkichli funksiyaning xossalari bilan tanishgan edik. Bu xossalardan logarifmik va ko'rsatkichli ifodalarni shakl almashtirishlarda foydalaniladi.
7-miso1. 32+log32 ni hisoblang.
Yechish. 32+log32 = 32 *3log32 = 9*2 = 18.
8-misol. alogbc =clogba (a>0, a1, b>0, b0, c> 0) tenglikni isbotlang.
Isbot: Logarifmning logabp = p*logab (a > 0, a 1, b>0, pR) xossasidan foydalansak, logba*logbc = logba*logbc tenglikdan logb(alogbc) = logb(clogba) tenglikni hosil qilamiz. Logarifmik funksiyaning monotonlik xossasidan alogbc = clogba ekanligi kelib chiqadi.
9-miso1. A = log4 x2/4 - 2log4(4x4) ifodani soddalashtiring va uning x = -2 dagi qiymatini toping.
Yechish. Logab2n = 2nlog|b| (a>0, a1, b0, nN) bo'lgani uchun log4 x2/4 =log4x2 - log44 = 2log4|x| - 1 va log4 (4x4) = log44 + log4 x4 = 1 + 41og4|x| tengliklar o'rinli.
U holda, A = 2log4 x| - 1 - 2(1 + 4log4|x|) = -3 - 61og4|x|. x = -2 bo'lsa,
A = -3 - 61og4|- 2 = -3 – 6log42 = -6.
10-misol. y = log (x-1/2) + log2 funksiyaning grafigini yasang.
Y echish. Funksiya ifodasini soddalashtirmay, grafikni yasashga harakat qilish maqsadga muvofiq emas ekanligi ko'rinib turibdi. Shu sababli dastlab funksiyaning ifodasini soddalashtiramiz:
Log2 = log2 = log2|2x-1| = log2(2 • x –1/2)= 1 + log2 x –1/2 tenglik o'rinlidir. Bu yerda funksiyaning aniqlanish sohasi |1/2; + | oraliqdan iboratligini ko'ramiz.
x > ½ da esa log (x-1/2) = - log2(x–1/2) bo'lgani uchun
(4- rasm)
y = log (x-1/2)+log2 = - log2(x–1/2) + (l + log2 x -1) = -log2 (x –1/2) + 1 + log2 x –1/2 = 1 ga ega bo'lamiz.
Endi funksiya grafigini yasash (4- rasm) qiyinchilik tug'dirmaydi.
Mashqlar :
1. Ifodani soddalashtiring:
a) ;
b) 811/log93 + 27log936 + 34/log79 ;
2. x ni toping:
a log3 x = 2 log3 (a + b)- 2/3log3 (a -b) +1/2log3a;
b log4 x = log4 (a - b) + 1/3 (2 log4 a + 3 log4 b);
d) log5x = 51og5m +1/2[ log5(m+n)+1/3 log5 (m-n)-log5m –log5n);
e log6 x = - log6 (a + b) +2/5( 2log6 a +1/2 log6 b – 1/3(log6a-log6b)-log6a).
3. Sonning musbat yoki manfiy ekanini aniqlang:
a) lg2 + lg3 + lg 0,16;
log 7-1/2log l,2-31og 2;
Nazorat savollari:
1.Darajalar ustida amallar?
2.Ko’rsatkichli funksiya deb nimaga aytiladi?
3. Logarifm deb nimaga aytiladi?
4.Logarifmlash va potensirlashni tushuntirib bering?
5.Logarifmik funksiya deb nimaga aytiladi?
6. Asosiy logarifmik ayniyatni yozib bering?
7. O’nli logarifmga ta’rif bering?
8. Natural logarifmga ta’rif bering?
9. Xarakteristika va mantissani izohlang?
10. Logarifmlarni ayniy shakl almashtirishga misol keltiring?
Do'stlaringiz bilan baham: |