3-Mavzu. Mashinali o’qitishda instrumental vositalardan foydalanish. Matlab dasturiy muhiti bilan ishlash hisoblashlarni bajarish



Download 5,83 Mb.
bet35/48
Sana01.01.2022
Hajmi5,83 Mb.
#284541
1   ...   31   32   33   34   35   36   37   38   ...   48
Bog'liq
3-ma'ruza - prezentatsiya

ans = 16

-120

-120 240

1200 -2700

-2700 6480

1680 -4200

-140

1680

-4200

2800

240

-140

Natijani qo’zg’aluvchi vergulli sonlar ko’rinishida tasvirlasak quiydagi hosil bo’ladi:



format long e,

inv(hilb(4))

1.0e+ 003

MAGIC - Sehirli kvadratni hosil qiladi.

Sintaksisi: M = magic(n)

Ushbu funksiyani qo’llanilishi bilan bog’liq grafiklar (3.13-rasm):

3.13-rasm.

Mos keluvchi funksiyalar: RAND, ONES.

PASCAL - Paskal matritasasini (Pascal matrix)

hosil qiladi.



Sintaksisi:

P = pascal(n)

P = pascal(n, k)

Misol:

>> n=4

n =

4

>> a=pascal(n)

a =


1

1

1

1

1 1

2 3


3 6

4 10

1

4

10

20

>>a=pascal(n,1)

a =


1

1

0

0

0

-1

0



0

0

1

1

-2

1



-3

3

-1

ROSSER - Resser matritsasini (Rosser matrix) hosil qiladi.

Sintaksisi:

R = rosser



Misol.

>> R=rosser R =



TOEPLITZ - Tiplets matritsasini (Toeplitz matrix) hosil qiladi.

Sintaksisi:

T = toeplitz(c);

T = toeplitz(c, r).

Misol.

c=1:4; T = toeplitz(c)



VANDER - Vandermond matritsasini (Vandermonde matrix) hosil qiladi.

Sintaksisi: V = vander(x).

Misol: x = [1 2 3 4]; V = vander(x).

WILKINSON - Uilkenson matritsasini (Wilkinson matrix) hosil qiladi.

Sintaksisi: W = wilkinson(n).

Misol: W = wilkinson(7):

4. MATLABda chiziqli algebraik tenglamalar sistemalarini

tadqiq etish va yechish

4.1. Chiziqli tenglamalar sistemasi

Juda ko’p nazariy va amaliy masalalarni hal qilishda chiziqli tenglamalar

sistemasiga duch kelamiz. Umumiy holda chiziqli tenglamalar sistemasining

ko’rinishi quyidagicha bo’ladi:

(3.1)

Bu yerda x , x , …, x - noma’lum o’zgaruvchilar, a , a , …, a - haqiqiy sonlar,



1

2

n

11

12

nn

tenglamalar sistemasining koeffisiyentlari va b , b ,…, b haqiqiy sonlar, tenglamalar



1

2

n

sistemasining ozod xadlari deyiladi.



Chiziqli tenglamalar sistemasining yechimi deb uni tenglamalarini ayniyatlarga

aylantiruvchi x ,x ,…, x sonlarga aytiladi.



1

2

n

Chiziqli tenglamalar sistemasini vektor ko’rinishda quyidagicha yozish mumkin:



Ax=b (3.2)

Bu yerda:

(nxn) o’lchovli matrisa,

(nx1) o’lchovli noma’lum vektor ustun,

(nx1) o’lchovli ozod had deb ataluvchi vektor ustun.

A* = [A, b] - kengaytirilgan matrisani kiritamiz. Chiziqli algebra kursidan

ma’lumki (Kroneker-Kapelli teoremasi) A va A* matrisalarning ranglari teng bo’lsa

(3.1) yoki (3.2) sistemaning yechimi mavjud bo’ladi.



4.2. Chiziqli tenglamalar sistemasini yechish usullari

Chiziqli tenglamalar sistemasini yechishning aniq usullaridan keng qo’llaniladiganlari



Gauss, Kramer va teskari matrisa usullaridir, taqribiy usullarga esa iterasiyalar(ketma-ket

yaqinlashish ), Zeydel va kichik kvadratlar usullarini keltirish mumkin.

Aniq usullardan Kramer usulini ko’rib chiqamiz. Buning uchun det(A)≠0 bo’lishi kerak.

Usulni to’liq keltirish uchun sistemaning asosiy matrisasi A ning k-ustun elementlarini

ozod had b bilan almashtirib Ak, k =1,n matrisalar hosil qilamiz. U holda det(A)≠0 shart

asosida yechimni topish uchun

det(Ak )

det(A)



xk



k 1, 2, 3, ...,n

tengliklardan foydalanish mumkin. Bu yerda foydalanilgan det(A) MATLAB funksiyasi

bo’lib, A matrisaning determinantini xisoblab beradi. Taqribiy usullardan iterasiya usulini

keltiramiz. Buning uchun (3.1) sistemani quyidagicha ko’rinishga keltiramiz:

Bu yerda i≠j bo’lganda

U holda

belgilashlar kiritib (3.3) ni quyidagicha yozib olamiz.



x= β+ αx

(3.4)


Endi (3.4) sistemani ketma-ket yaqinlashish (iterasiya) usuli bilan yechamiz.

Boshlang’ich yaqinlashish uchun x(0)= β ozod hadni olamiz va ketma-ket keyingi

yaqinlashishlarni hosil qilamiz:

x(1)= β+ x(0);

x(2)=β+ x(1);

……………

x(k+1) =β+ x(k);

Agar x(0), x(1),…, x(k),… sonlar ketma-ketligi limitga ega bo’lsa, u holda bu limit (3.3)

yoki (3.4) sistemaning yechimi bo’ladi. Yaqinlashishlarni ochiq holda quyidagicha yozish

mumkin:


Yechimni taqribiy hisoblashning ana shunday usuli iterasiya usuli deyiladi.


Download 5,83 Mb.

Do'stlaringiz bilan baham:
1   ...   31   32   33   34   35   36   37   38   ...   48




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish