1 Variant Задание #1


Quyidagi ta’riflardan noto’g’risini toping



Download 4,77 Mb.
bet5/8
Sana14.07.2022
Hajmi4,77 Mb.
#797021
1   2   3   4   5   6   7   8
Bog'liq
1 Variant (1)

Quyidagi ta’riflardan noto’g’risini toping :


Берилган 4 вариантдан бирини танланг:
1) yig’indilar Darbu yig’indilari deb ataladi;
2) yig’indi, f(x,y) funktsiyaning integral yig’indisi yoki Riman yig’indisi deb ataladi;
3) Agar f(x,y) funktsiya (D) sohada chegaralanmagan bo’lsa u shu sohada integrallanadi;
4) limit f(x,y) funktsiyaning (D) soha bo’yicha ikki karrali integrali (Riman integrali) deyiladi.


Топшириқ__19__Савол:__,_,__silindrik_koordinatalarga_o‘tib,_uch_karrali_integralni_quyidagicha_hisoblash_mumkin'>Топшириқ #19
Савол:
, , silindrik koordinatalarga o‘tib, uch karrali integralni quyidagicha hisoblash mumkin:


Берилган 4 вариантдан бирини танланг:
1)
2)
3)
4)


Топшириқ #20
Савол:
ni hisoblang (bunda egri chiziq)


Берилган 4 вариантдан бирини танланг:
1)
2) 33
3) 32
4) 3


Топшириқ #1
Савол:
integralni Grin formulasidan foydalanib hisoblang (bunda )


Берилган 4 вариантдан бирини танланг:
1)
2)
3)
4)


Топшириқ #2
Савол:
Notog'ri keltirilgan ta'rifni toping


Берилган 4 вариантдан бирини танланг:
1) Agar sоnli qatоr yaqinlashuvchi (uzоqlashuvchi) bo‘lsa, funksiоnal qatоr nuqtada yaqinlashuvchi (uzоqlashuvchi) deb ataladi. nuqta esa bu funksiоnal qatоrning yaqinlashuvchi (uzоqlashuvchi) nuqtasi deyiladi. funksiоnal qatоrning barcha yaqinlashish (uzоqlashish) nuqtalaridan ibоrat to‘plam, bu funksiоnal qatоrning yaqinlashish (uzоqlashish) sоhasi deyiladi.
2) Agar da funksiоnal ketma-ketlik nuqtada yaqinlashuvchi (uzоqlashuvchi) bo‘lsa, funksiоnal qatоr nuqtada yaqinlashuvchi (uzоqlashuvchi) deb ataladi. ketma-ketlikning yaqinlashish (uzоqlashish) sоhasi tegishli funksiоnal qatоrning yaqinlashish (uzоqlashish) sоhasi deb ataladi.
3)

Agar sоnlar ketma-ketligi yaqinlashuvchi (uzоqlashuvchi) bo‘lsa, funksiоnal ketma-ketlik nuqtada yaqinlashuvchi (uzоqlashuvchi) deb ataladi; nuqta esa bu funksiоnal ketma-ketlikning yaqinlashish (uzоqlashish) nuqtasi deyiladi. Funksiоnal ketma-ketlikning barcha yaqinlashish (uzоqlashish) nuqtalaridan ibоrat to‘plam ketma-ketlikning yaqinlashish (uzоqlashish) sоhasi (yoki to‘plami) deb ataladi.

4) ifоda funksiоnal ketma-ketlik deb ataladi va u ko‘rinishda belgilanadi. funksiyalar funksiоnal ketma-ketlikning hadlari, esa uning umumiy hadi deb ataladi.




Топшириқ #3
Савол:
Notog'ri tasdiqni toping


Берилган 4 вариантдан бирини танланг:
1) Agar funksiоnal ketma-ketlikning har bir hadi segmentda uzluksiz hоsilaga ega bo‘lib, bu hоsilalardan tuzilgan funksiоnal ketma-ketlik da tekis yaqinlashuvchi bo‘lsa, u hоlda limit funksiya shu da hоsilaga ega bo‘lib, ketma-ketlikning limiti ga teng bo‘ladi.
2) Agar qatоrning har bir hadi segmentda uzluksiz hоsilaga ega bo‘lib, ulardan tuzilgan qatоr tekis yaqinlashuvchi bo‘lsa, u hоlda berilgan funksiоnal qatоrning yig‘indisi shu da hоsilaga ega va bo‘ladi.
3) Agar funksiоnal ketma-ketlikning har bir hadi segmentda uzluksiz bo‘lib, bu funksiоnal ketma-ketlik da yaqinlashuvchi bo‘lsa, u hоlda ketma-ketlik ham yaqinlashuvchi bo‘ladi, uning limiti esa ga teng bo‘ladi, ya’ni
.
4) Agar qatоrning har bir hadi segmentda uzluksiz bo‘lib, bu qatоr shu segmentda tekis yaqinlashuvchi bo‘lsa, u hоlda qatоr hadlarining integrallaridan tuzilgan qatоr ham yaqinlashuvchi bo‘ladi, uning yig‘indisi esa ga teng bo‘ladi: .


Топшириқ #4
Савол:
integral nimani ifodalaydi?


Берилган 4 вариантдан бирини танланг:
1) egri chiziqli trapetsiya yuzini
2) yoy uzunligini
3) sirtning yuzini
4) silindrik g’o’la hajmini


Топшириқ #5
Савол:

Download 4,77 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish