1 Приближенные вычисления. Соотношение между угловой и радиальной мерами измерения углов и длинами дуг


)Градиенты навигационного параметра



Download 0,95 Mb.
bet7/11
Sana30.10.2019
Hajmi0,95 Mb.
#24688
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
ОТВЕТЫ ДЛЯ ЭКЗАМЕНА ПО МОС

25)Градиенты навигационного параметра.

Любые измерения содержат ошибки, поэтому измерив пеленг, дистанцию или угол и проложив на карте соответствующую изолинию, нельзя считать, что судно будет находиться на этой изолинии. Вычислить возможное смещение изолинии из-за ошибок наблюдений можно, используя понятие градиента функции.



Изобразим две изолинии, соответствующие значениям навигационных параметров U и U + ∆U (рис. 8.2). На всей изолинии значение функции навигационного параметра остается постоянным, но оно изменится при переходе на другую изолинию. Чем теснее расположены изолинии друг к другу, тем меньше расстояние ∆n между ними при заданном приращении функции ∆U, тем быстрее меняется функция в данном районе. Это изменение удобно характеризовать отношением ∆U/∆n или вектором g, направленным в сторону возрастания функции по нормали к изолинии. Вектор g называется градиентом. Таким образом, градиентом навигационного параметра назы­вается вектор, направленный по нормали к навигационной изолинии в сторону ее смещения при положительном приращении параметра, причем модуль этого вектора характеризует наибольшую скорость изменения па­раметра в данном месте. Этот модуль равен


Размерность модуля градиента равна размерности параметра U на линейную величину. Направления вектора градиента и линии положения взаимно перпендикулярны, обозначается направление градиента символом r.

Если при измерении навигационного параметра U допущена ошибка ∆U и известен градиент, то смещение линии положения параллельно самой себе определяется формулой



Чем больше величина градиента g, тем меньше смещение линии положения при той же ошибке ∆U, тем точнее будет определение места судна.


26)Основные понятия и определения теории вероятности. Законы распределения случайных величин.

Частное определение: отношение числа случаев появления события A(m) к общему числу проведённых испытаний (n).Классическое определение: отношение числа испытаний благоприятных событию A(m) к общему числу испытаний (n).Косвенное определение вероятности: в этом случае сложные события разбиваются на несколько простых, вероятность которых подсчитывается частными или классическими, затем вероятность сложного события определяется по вероятностям составляющих его простых событий с использованием теорем сложения и умножения вероятностей.Случайные величины и законы их распределения (СВ):Дискретные: происходят через определённый интервал времени.Непрерывные: непрерывные события.Самый распространенный и наиболее общим законом распределения случайной величины при неограниченном количестве измерений наз-ся закон Гаусса.



27)Числовые характеристики случайных величин и случайных функций.

Случайной величиной называется такая величина, которая в результате опыта может принимать различные заранее не известные численные значения при сохранении определенной совокупности условий, сопровождающий данный опыт. Одни случайные величины могут принимать отдельные друг от друга изолированные числовые значения. Такие случайные величины называются дискретными или прерывными.

Числовые характеристики случайных величин. 1)Математическое ожидание (среднее значение).Определение:

Математическим ожиданием называется- для дискретной случайной величины:



Сумма берется по всем значениям, которые принимает случайная величина. Ряд должен быть абсолютно сходящимся (в противном случае говорят, что случайная величина не имеет математического ожидания) - для непрерывной случайной величины:Интеграл должен быть абсолютно сходящимся (в противном случае говорят, что случайная величина не имеет математического ожидания).Свойства математического ожидания:a . Если С - постоянная величина, то МС = С, b . МСх = СМх, c . Математическое ожидание суммы случайных величин всегда равно сумме их математических ожиданий: М(х+y) = Мх + Мy, d . Вводится понятие условного математического ожидания. Если случайная величина принимает свои значения хi с различными вероятностями p(xi/Hj) при разных условиях Hj, то условное математическое ожидание определяется как

или Если известны вероятности событий Hj, может быть найдено полное математическое ожидание:

Если f(x) - есть функция случайной величины х, то определено понятие математического ожидания функции случайной величины: - для дискретной случайной величины:

Сумма берется по всем значениям, которые принимает случайная величина. Ряд должен быть абсолютно сходящимся.

-для непрерывной случайной величины: Интеграл должен быть абсолютно сходящимся. 2 . Дисперсия случайной величины. Определение:



Дисперсией случайной величины х называется математическое ожидание квадрата отклонения значения величины от ее математического ожидания: Dx = M(x-Mx)2 - для дискретной случайной величины:

Сумма берется по всем значениям, которые принимает случайная величина. Ряд должен быть сходящимся (в противном случае говорят, что случайная величина не имеет дисперсии)- для непрерывной случайной величины:

Интеграл должен быть сходящимся (в противном случае говорят, что случайная величина не имеет дисперсии) .Свойства дисперсии:a . Если С - постоянная величина, то DС = 0, b . DСх = С2Dх, c . Дисперсия суммы случайных величин всегда равно сумме их дисперсий только, если эти величины независимы (определение независимых величин), d . Для вычисления дисперсии удобно использовать формулу: Dx = Mx2 - (Mx)2
28)Измерения и наблюдения. Классификация измерения.Дискретные – это такие измерения которые выполняются через определённый интервал времени.Непрерывные – это те измерения которые ведутся всегда автоматизированными аппаратами.Необходимые – это измерения минимальное количество которых обеспечивает.Избыточные – это такие которые выполнены сверх необходимых.Равноточные – это такие СКП результат измерения которых будет одинаковый.По степени взаимо связи:взаимонезависимы – измерение погрешности которой формируется различными факторами.корреляционновзаимозависимы – это измерения в состав погрешности которых входит одна и та же общая погрешность сформирована одним и тем же фактором.Функциональнозависимы – это измерения все погрешности которых формируются одним и тем же фактором..
29)Классификация погрешности и их свойства. Методы учёта систематических погрешностей.Погрешность измерения называется разница между измеренным и истинным значением величины.Непосредственно источник погрешности является:несовершенство приборов и инструментов,несовершенство органов чувств и не стабильность психического состояния,незакономерные колебания параметров внешней среды,нестабильность метода измерений, несовершенство метода измерений.По характеру действия на величину погрешности подразделяются на:случайные, Систематические.

систематические на: Постоянные,Переменные,периодические ,прогрессивные,грубые (промахи).



30)Нормальный закон распределения случайных погрешностей. Функция Лапласа. Распределение Стьюдента.

 Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Нормальный закон распределения также называется законом Гаусса.

            Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Нормальный закон распределения имеет плотность распределения

(*)

где m и s>0 некоторые числовые параметры. В  разделе «Предельные теоремы теории вероятностей.» будут обсуждены причины, в силу которых нормальный закон распределения играет важную

роль в теории вероятностей и ее приложениях.

х. Легко убедиться, что кривая, определяемая функцией распределения (*), имеет максимум в точке x=m, а точки перегиба отстоят от точки x=m на расстоянии s и при  функция (*) асимптотически приближается к нулю. График функции (*) изображен на рис. 9



 

 

 



 

 

                



 

В зависимости от величины параметров кривая плотности вероятности имеет различный вид и поэтому правильнее было бы говорить о семействе нормальных законов распределения (на рис. 10 показана зависимость формы кривой распределения от величины s при фиксированном m).


Нормальный закон распределения относится к непрерывной случайной величине. И тесно связан с таким понятием как функция Лапласа. Она нужна для нахождения вероятности

функции Лапласа - это вероятность того, что случайная величина примет значение, принадлежащее заданному интервалу. При решении задач по теории вероятности, как правило, требуется найти значение функции Лапласа по известному значению аргумента или, наоборот, по известному значению функции Лапласа требуется найти значение аргумента. Для этого пользуются таблицей значений функции Лапласа. Таблица значений функции Лапласа незаменима при изучении теории вероятности, так как решать интеграл (функцию Лапласа) сложно, а запомнить таблицу значений функции Лапласа просто невозможно.

Функцию Лапласа и данную таблицу чаще всего изучают на втором курсе университета, при изучении математики и теории вероятности, если Вам в данной теме, что-то не понятно, то Вы всегда можете задать вопрос на нашем форуме, мы будем рады вам помочь. Пользуйтесь нашим сайтом и таблицей на здоровье.

Функция Лапласа



При разных значениях t; F(–t) = –F(t) (функция нормального распределения).



Распределение Стьюдента

Распределе́ние Стью́дента в теории вероятностей — это однопараметрическое семейство абсолютно непрерывных распределений. Названо в честь Уильяма Сили Госсета, который первым опубликовал работы, посвящённые распределению, под псевдонимом «Стьюдент».

Пусть  — независимые стандартные нормальные случайные величины, такие что . Тогда распределение случайной величины , где



называется распределением Стьюдента с  степенями свободы. Пишут . Её распределение абсолютно непрерывно и имеет плотность

,

где  — гамма-функция Эйлера.



Download 0,95 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish