1. Опыт с равновероятностными исходами. Вероятность и частота. Некоторые комбинаторные формулы. Частотой



Download 1,11 Mb.
bet13/13
Sana18.11.2022
Hajmi1,11 Mb.
#867769
1   ...   5   6   7   8   9   10   11   12   13
Bog'liq
теория вероятности

Интервальной нзв оценку, к-рая определяется двумя числами – концами интервала. Инт.оценки позволяют установить точность и надежность оценок.
Надежностью (доверительной вероятностью) оценки  по * нзв вер-ть γ, с к-рой осуществл.нерав-во | - *|<δ. Заменив нерав-во | - *|<δ равносильным ему двойным нерав-вом -δ< - *<δ или *-δ<<δ+* имеем

Доверительным нзв интервал (*-δ, *+δ), к-рый покрывает неизвестный параметр с заданной надежностью γ.
1.Интервальной оценкой (с надежностью γ) математического ожидания а нормально распределенного количественного признака X по выборочной средней при известном среднем квадратическом отклонении σ генеральной совокупности служит доверительный интервал

Где - точность оценки, n-объем выборки, t-значение аргумента ф-ции Лапласа Ф(t),при котором Ф(t)=γ/2; при неизвестном σ (и объеме выборки n<30)

где s-«исправленное» выборочное среднее квадратическое отклонение, tγ находят по таблице по заданным n и γ.
2. Интервальной оценкой (с надежностью γ) среднего квадратического отклонения σ нормально распределенного количественного признака X по «исправленному» выборочному среднему квадратическому отклонению s служит довер. инт-л
(при q<1)
(при q>1)
Где q находят по таблице по заданным n и γ
3. Интервальной оценкой (с надежностью γ) неизвестной вер-ти p биноминального распред-я по относ. частоте ω служит довер.инт-л (с приближ. концами p1 и p2)

где


Где n-общее число испытаний; m-число появлений событий; ω-относ.частота, равная отношению m/n;t-значение аргумента ф-ции Лапласа, при к-ром Ф(t)=γ/2(γ-заданная надежность).
Замечание. При больших значениях n (порядка сотен) можно принять в кач-ве приближ.границ довер.инт-ла



20. Статистическая проверка гипотез. Основные понятия. Статистический критерий, ошибки 1-го и 2-го родов, уровень значимости и мощность критерия. Критерий согласия Пирсона. Проверка гипотезы о значении параметров нормального распределения. Проверка гипотезы о законе распределения случайной величины.
Статистическая проверка гипотез. Основные понятия. Уровень значимости и мощности критерия
Статистической гипотезой наз всякое непротиворечивое множество утверждений относительно закона распределения случайной величины.

С татистикой нзв произвольная функция Z = φ(Zn) выборки Zn, для значений к-рой известны условные плотности распределения f(z|H0) и f(z|H1) относительно проверяемой гипотезы H0 и конкурирующей с ней альтернативной гипотезы H1. Из опред следует, что Z есть СВ. Практическое применение мат. статистики состоит в проверке соответствия результатов экспериментов предполагаемой гипотезе. С этой целью строится процедура (правило) проверки гипотезы. Критерием согласия называется правило, в соответствии с которым по реализации статистики Z, вычисленной на основании апостериорной выборки zn, гипотеза H0 принимается или отвергается. Критической областью G называется область реализаций z статистики Z, при которых гипотеза H0 отвергается. Доверительной областью G называется область значений z статистики Z, при которых гипотеза H0 принимается. Уровнем значимости α критерия согласия называется вероятность события, стоящего в том, что гипотеза H0 отвергается, когда она верна, т.е.
α =P{ZG|H0}
где вероятность P соответствует условной плотности распределения f(z|H0). Мощностью γ критерия согласия называется вероятность события, состоящего в том, что гипотеза H0 отвергается, когда она неверна, т.е.
γ=P{ZG|H1}
где вероятность P соответствует условной плотности f(z|H1). Критической точкой zβ называется точка на оси Oz, являющаяся квантилем уровня
β=1 – α
распределения F(z|H0), соответствующего плотности распределения f(z|H0). На рис. показана графическая интерпретация введенных понятий, где β + α = 1, δ + γ = 1.



Статистический критерий, ошибки 1-го и 2-го родов
Ошибка 1-го рода состоит в отклонении гипотезы, если она верна (пропуск цели).
Вероятность совершения ошибки 1-го рода обозначается α и наз. Уровнем значимости.
Ошибка 2-го рода – гипотеза принимается, если она неверна – β (ложное срабатывание).
Вероятность не совершить ошибку 2-го рода (1-β) наз. ложностью критерия.
Критерием (статистическим критерием) наз. случайная величина , которая позволяет принять или отклонить нулевую гипотезу.

Проверка гипотез о законе распределения случайной величины. Критерий согласия Пирсона.
Пусть имеется апостериорная выборка zn и требуется проверить гипотезу H0, состоящую в том, что непрерывная СВ X имеет определенный закон распределения f(x) (например, нормальный, равномерный и т.д.). Истинный закон распределения f(x) неизвестен. Для проверки такой гипотезы обычно используют критерий согласия хи-квадрат χ² (критерий Пирсона).


Критерием согласия называется критерий, использованный для проверки гипотез о предполагаемом законе распределения.
Проверка состоит в следующем:
1)Строится интервал - статистический ряд и гистограмма
2) По виду гистограммы

3) На основе выборки находим точечные оценки

4) Интервал возможных значений разбиваем на m непересекаемых интервалов. В каждом из них фиксируем число показаний
5) Вычисляем вероятность показаний ξ в каждом интервале
6) Строим критерий χ²

Аналитическое выражение плотности ²- сложное, поэтому задаем уровень значимости α; k; находим




Проверка гипотезы о значении параметров нормального распределения.
Пусть известно, что СВ X имеет нормальное распределение. Требуется проверить гипотезу H0, состоящую в том, что mX = m (m - некоторое фиксированное число), используя апостериорную выборку zn. Возможны два случая: дисперсия (σX)2 известна или неизвестна.
1) Дисперсия известна

2) Дисперсия неизвестна
В качестве оценки вводим выборочную дисперсию
В качестве статистики:



Гипотезы о значении дисперсии
Download 1,11 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish