Aniq integralning ta’riflari


Tasavvur qilinadigan (ifodalovchi) to’g’ri to’rtburchaklar



Download 0.85 Mb.
bet11/20
Sana10.05.2021
Hajmi0.85 Mb.
1   ...   7   8   9   10   11   12   13   14   ...   20
Tasavvur qilinadigan (ifodalovchi) to’g’ri to’rtburchaklar.

Biz yuqorida ko’rdikki, aniq integral, Riman yig’indisining limiti shaklida, quyidagicha ifodalanadi:



(4.3)

Bunda , oraliqdagi ixtiyoriy tanlangan nuqta, esa, funksiyaning shu oraliqda tasavvur qilinadigan qiymatidir. Agar funksiya musbat bo’lsa, ko’paytma, 4.7 – chizmada ko’rsatilgan tasavvur qilinadigan to’g’ri to’rtburchakning yuzini beradi.


4.7-chizma. 4.8-chizma.


(4.3) formula bizga, berilgan egri chiziqdan pastda joylashgan yuzani, tasavvur qilinadigan to’g’ri to’rtburchaklar yuzalari yig’indisi sifatida, tasvirlash mumkinligini ko’rsatadi (4.8-chizma).

Endi soha, yuqoridan funksiyaning grafigi, pastdan esa, funksiyaning grafigi bilan chegaralangan bo’lsin (4.11 - chizma).




3 4.9-chizma. 4.10-chizma.


Unda sohaning yuzi, funksiyani, dan gacha, bo’yicha integrallaash yordamida topiladi (hisoblanadi), ya’ni

.

Bu holda Riman yig’indisi,



shaklida bo’ladi va tasavvur qilinadigan to’g’ri to’rtburchaklarning o’lchamlari quyidagicha: - «balandligi» va - «asosi» (4.11-chizma) bo’ladi.



Endi ga nisbatan integrallash yordamida yuzalarni hisoblash formulasini keltirib chiqaramiz. 4.11 – chizmada ko’rsatilgan sohaning chegaralari, ning funksiyalari bo’lmasdan, ular ning funksiyalaridan iborat bo’lgan holni qaraymiz.

4.11-chizma. 4.12-chizma.


Bu holda tasavvur qilinadigan to’g’ri to’rtburchaklarni gorizontal ko’ri-nishda olamiz va yuzani,

Riman yig’indisining limiti sifatida, tasvirlaymiz (4.12-chizma).

Demak, berilgan sohaning yuzi,

integral orqali ifodalanadi. Bu yerda integrallash,



«gorizontal bo’linish» ni ga nisbatan bajaradi.



4.1-misol. va chiziqlar bilan chegaralangan sohaning yuzini: ga nisbatan; ga nisbatan integrallash yordamida hisoblang.

Yechilishi. Avvalo, berilgan chiziqlarning nuqtalarda kesishishiga ishonch hosil qilish mumkin.

bo’yicha integrallash uchun, tasavvur qilinadigan to’g’ri to’rtburchaklarni vertikal joylashtiramiz va tenglamalarni ga nisbatan yechamiz: tenglamani ga nisbatan yechib, bo’lishini olamiz, bunda - parabolaning yuqori yarmidan, esa, parabolaning quyi yarmidan iborat. to’g’ri chiziq tenglamasini , shaklida yozamiz (4.13- chizma). Qaralayotgan sohaning yuqori chegarasi, egri chiziqdan iborat. Uning quyi chegarasi esa, ikkita, har xil tenglamalar orqali ifodalanadi: dan gacha o’zgarganda, egri chiziq, dan gacha o’zgarganda esa, to’g’ri chiziq. Shunday qilib, sohaning yuzi,

4.13-chizma. 4.14-chizma.




bo’yicha integrallash uchun, biz tasavvur qilinadigan to’g’ri to’rtburchaklarni gorizontal joylashtiramiz (4.14-chizma). Bunda, o’ngdan chegaralovchi to’g’ri chiziq va chapdan chegaralovchi egri chiziq esa, . Modomiki, , dan gacha o’zgarar ekan,






Download 0.85 Mb.

Do'stlaringiz bilan baham:
1   ...   7   8   9   10   11   12   13   14   ...   20




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
O’zbekiston respublikasi
maxsus ta’lim
zbekiston respublikasi
axborot texnologiyalari
o’rta maxsus
davlat pedagogika
nomidagi toshkent
guruh talabasi
pedagogika instituti
texnologiyalari universiteti
toshkent axborot
xorazmiy nomidagi
rivojlantirish vazirligi
samarqand davlat
haqida tushuncha
navoiy nomidagi
toshkent davlat
nomidagi samarqand
ta’limi vazirligi
Darsning maqsadi
vazirligi toshkent
Toshkent davlat
tashkil etish
kommunikatsiyalarini rivojlantirish
Ўзбекистон республикаси
Alisher navoiy
matematika fakulteti
bilan ishlash
Nizomiy nomidagi
vazirligi muhammad
pedagogika universiteti
fanining predmeti
таълим вазирлиги
sinflar uchun
o’rta ta’lim
maxsus ta'lim
fanlar fakulteti
ta'lim vazirligi
Toshkent axborot
махсус таълим
tibbiyot akademiyasi
umumiy o’rta
pedagogika fakulteti
haqida umumiy
Referat mavzu
fizika matematika
universiteti fizika
ishlab chiqarish
Navoiy davlat