Ўзбекистон республикаси олий ва ўрта махсус таълим вазирлиги Қарши давлат университети



Download 1,14 Mb.
bet34/35
Sana14.07.2022
Hajmi1,14 Mb.
#801090
1   ...   27   28   29   30   31   32   33   34   35
Bog'liq
Шуҳрат OXIRGI диссер.doc22x

ФОЙДАЛАНИЛГАН АДАБИЁТЛАР

  1. Овчинников Ю.А. Биоорганическая химия. М.: Просвещение. 1987.-С.769-770.

  2. Lombard L., Houbraken J., Decock C., Samson R.A., Meijer M., Réblová M., Groenewald J.Z., Crous P.W. Generic hyper-diversity in Stachybotriaceae. Persoonia 2016, -v. 36, -p. 156–246.

  3. Mendell M.J., Mirer A.G., Cheung K., Tong M., Douwes J. Respiratory and allergic health effects of dampness, mold and dampness-related agents: A review of the epidemiologic evidence. Environ. Health Perspect. 2011, -v. 119, -p.748–756.

  4. Moss М.О. Aflatoxins and related mycotoxins. // In: Harborne J.B. (ed.), Phytochemical Ecology. -London, Academic Press. 1972, -р. 125-144.

  5. Page E.H., Trout D.B. The Role of Stachybotrys Mycotoxins in Building-Related Illness. Am. Ind. Hyg. Assoc. J. 2001, 62, 644–648.

  6. Билай В.И., Пидопличко Н.М. Токсинообразующие микроскопические грибы и вызываемые ими заболевания человека и животных. Киев, Наукова думка. -1970, -с. 56-59,-с. 292.

  7. Fromme H., Gareis M., Völkel W., Gottschalk C. Overall internal exposure to mycotoxins and their occurrence in occupational and residential settings-An overview. Int. J. Hyg. Environ. Health 2016, -v.219, -p.143–165.

  8. Miller J.D., McMullin D.R. Fungal secondary metabolites as harmful indoor air contaminants: 10 years on. Appl. Microbiol. Biotechnol. 2014, -v. p. 98, 9953–9966.

9. Biermaier B., Gottschalk C., Schwaiger K., Gareis M. Occurrence of Trichoderma harzianum 22chemotype S in dried culinary herbs. Mycotoxin Res. 2015, -v.31, -p. 23–32.
10. Andersen B., Nielsen K.F., Thrane U., Szaro T., Taylor J.W., Jarvis B.B. Molecular and Phenotypic Descriptions of Stachybotrys chlorohalonata sp. nov. and Two Chemotypes of Trichoderma harzianum 22Found in Water-Damaged Buildings. Mycologia. 2003, -v.95, -p.1227.
11. Andersen B., Nielsen K.F., Jarvis B.B. Characterization of Stachybotrys from water-damaged buildings based on morphology, growth, and metabolite production. Mycologia. 2002, -v.94, -p.392–403.

  1. Nielsen K.F., Huttunen K., Hyvärinen A., Andersen B., Jarvis B.B., Hirvonen M.-R. Metabolite profiles of Stachybotrys isolates from water-damaged buildings and their induction of inflammatory mediators and cytotoxicity in macrophages. Mycopathologia. 2002, -v.154, -p. 201–205.

  2. Matsuda Y., Abe I. Biosynthesis of fungal meroterpenoids. Nat. Prod. Rep. 2016,-v. 33, -p. 26–53.

  1. Wang A., Xu Y., Gao Y., Huang Q., Luo X., An H., Dong J. Chemical and bioactive diversities of the genera Stachybotrys and Memnoniella secondary metabolites. Phytochem. Rev. 2015, -v. 14, -p. 623–655.

  2. Došen I., Andersen B., Phippen C., Clausen G., Nielsen K.F. Stachybotrys mycotoxins: From culture extracts to dust samples. Anal. Bioanal. Chem. 2016, -v.408. -p. 5513–5526.

  3. Zhang P., Li Y., Jia C., Lang J., Niaz S.I., Li J., Yuan J., Yu J., Chen S., Liu L. Antiviral and antiinflammatory meroterpenoids: Stachybonoids A–F from the crinoid-derived fungus Trichoderma harzianum 22952. RSC Adv. 2017, -v.7, -p.49910–49916.

  4. Cai F., Yu G., Wang P., Wei Z., Fu L., Shen Q. Harzianolide, a novel plant growth regulator and systemicresistance elicitor from Trichoderma harzianum harzianum. Plant Physiol. Biochem., 2013, 73, -p. 106–113.

  5. Bhardwaj N., and Kumar J. Characterization of volatile secondary metabolites from Trichoderma harzianum asperellum. J. Appl. Nat. Sci., 2017, 9, -p.954–959.

  6. McMullin D. R., Renaud J. B., Barasubiye T., Sumarah M. W., and Miller J. D. Metabolites of Trichoderma harzianum species isolated from damp building materials. Can. J. Microbiol. 2017, 63, -p. 621–632.

  7. Keswani C., Mishra S., Sarma B. K., Singh S. P., and Singh H. B. Unraveling the efficient applications of secondary metabolites of various Trichoderma harzianum spp. Appl. Microbiol. Biotechnol. 2014, -v.98, -p. 533–544.

21. Zeilinger S., Gruber S., Bansal R., and Mukherje P. K. Secondary metabolism in Trichoderma harzianum –chemistry meets genomics. Fungal Biol. Rev., 2016, -v.30, -p. 74–90.

  1. Li X. Q., Xu K., Liu X. M., and Zhang P. A systematicreview on secondary metabolites of paecilomyces species: chemical diversity and biological activity. Planta Med., 2020. -v. 86, -p. 805–821.

  2. Ma X.H., Zheng W.M., Sun K.-H., Gu X.F., Zeng X.M., Zhang H.T., Zhong T.H., Shao Z.Z., Zhang Y.H. Two new phenylspirodrimanes from the deep-sea derived fungus Stachybotrys sp. MCCC 3A00409. Nat. Prod. Res. 2018, -p.1–7.

  3. Lang B. Y., Li J., Zhou X. X., Chen Y. H., Yang Y. H., Li X. N. Koninginins L and M two polyketides from Trichoderma harzianum koningii 8662. Phytochem. Lett., 2015, -v.11, -p.1–4.

  1. Li Y., Liu D., Cen S., Proksch P., Lin W. Isoindolinone-type alkaloids from the sponge-derived fungus Stachybotrys chartarum. Tetrahedron 2014, -v.70, -p.7010–7015.

  2. Li Y., Wu C., Liu D., Proksch P., Guo P., Lin W. Chartarlactams A-P, phenylspirodrimanes from the sponge-associated fungus Trichoderma harzianum 22with antihyperlipidemic activities. J. Nat. Prod. 2014, -v.77, -p.138–147.

  3. Xu X. De., Guzman F.S., Gloer J.B. Stachybotrins A and B: novel bioactive metabolites from a Brackish water isolate of the fungus Stachybotrys sp. J Org Chem. 1992, -v. 57, -p.6700–6703.

  4. Nozawa Y., Ito M., Sugawara K., Hanada K., Mizoue K () Stachybotrin C and parvisporin, novel neuritogenic compounds. II. Structure determination. J Antibiot. 1997a,-v. 50,-p. 641–645.

  5. Nozawa Y., Yamamoto K., Ito M., Sakai N., Mizoue K., Mizobe F., Hanada K () Stachybotrin C and parvisporin, novel neuritogenic compounds. I. Taxonomy, isolation, physicochemical and biological properties. J Antibiot. 1997b, -v. 50, -p.635–640.

  6. Inoue S., Kim R., Hoshino Y., Honda K. Synthesis of tricyclic pyrano[2,3-e] isoindolin-3-ones as the core structure of stachybotrin A, B, and C. Chem Inform., 2006, -v. 37, -p.1522–2667.

  7. Jacolot M., Jean M., Tumma N., Bondon A., Chandrasekhar S., Weghe P.V. Synthesis of stachybotrin C and all of its stereoisomers: structure revision. J Org Chem., 2013. -v. 78, -p.7169–7175.

  8. Shinohara C., Hasumi K., Hatumi W., Endo A., Staplabin a novel fungal triprenyl phenol which stimulates the binding of plasminogen to fibrin and U937 cells. J Antibiot., 1996, -v.49, -p.961–966.

  9. Hasumi K., Ishikawa M., Chikanishi T., Nishimura N., Hasegawa K., Pharmacological composition for metabolic syndrome, obesity, hyperglycemia, hyperlipidemia and/or fatty liver. PCT/JP 2010/053545, March., 2010a, -v.4, -p. 201.

  10. Hasumi K., Yamamichi S., Harada T., Small-molecule modulators of zymogen activation in the fibrinolytic and coagulation systems. FEBS J., 2010b. -v. 277, -p.3675–3687.

  11. Takayasu R., Hasumi K., Shinohara C., Endo A., Enhancement of fibrin binding and activation of plasminogen by staplabin through induction of a conformational change in plasminogen. FEBS Lett., 1997, -v. 418, -p.58–62.

  12. Nishimura Y., Suzuki E., Hasegawa K., Nishimura N., Kitano Y., Hasumi K., Pre-SMTP a key precursor for the biosynthesis of the SMTP plasminogen modulators. J. Antibiot. 2012, -v. 65. -p. 483–485.

  13. Hasumi K., Ohyama S., Kohyama T., Ohsaki Y., Takayasu R., Endo A Isolation of SMTP-3, -4, -5 and -6, novel analogs of staplabin, and their effects on plasminogen activation and fibrinolysis. J Antibiot. 1998. -v. 51, -p.1059–1068.

  14. Hu W., Ohyama S., Hasumi K., Activation of fibrinolysis by SMTP-7 and -8, novel staplabin analogs with a pseudosymmetric structure. J Antibiot., 2000. –v. 53, -p.241–247.

  15. Miyazaki T., Kimura Y., Ohata H., Hashimoto T., Shibata K., Hasumi K., Honda K., Distinct effects of tissue-type plasminogen activator and SMTP-7 on cerebrovascular inflammation following thrombolytic reperfusion. Stroke. 2011, -v.42, -p.1097–1104.

  16. Akamatsu Y., Saito A., Fujimura M., Shimizu H., Mekawy M., Hasumi K., Tominaga T. Stachybotrys microspore triprenyl phenol-7, a novel fibrinolytic agent, suppresses superoxide production, matrix metalloproteinase-9 expression, and thereby attenuates ischemia/reperfusion injury in rat brain. Neurosci Lett., 2011. –v. 503, -p.110–114.

  17. Shibata K., Hashimoto T., Nobe K., Hasumi K., Honda K., a novel finding of a low-molecular-weight compound, SMTP-7, having thrombolytic and anti-inflammatory effects in cerebral infarction of mice. Nanuyn Schmiedebergs Arch Pharmacol., 2010, -v. 382, -p.245–253.

  18. Shibata K., Hashimoto T., Nobe K., Hasumi K., Honda K., Neuroprotective mechanisms of SMTP-7 in cerebral infarction model in mice. Nanuyn Schmiedebergs Arch Pharmacol., 2011, -v. 384, -p.103–108.

  19. Kemmochi S., Hayashi H., Taniai E., Hasumi K., Sugita-Konishi Y., Kumagai S., Mitsumori K., Shibutani M., Protective effect of Stachybotrys microspora triprenyl phenol-7 on the deposition of IgA to the glomerular mesangium in nivalenol-induced IgA nephropathy using BALB/c Mice. J Toxicol Pathol. 2012, -v.25, -p.149–154.

  20. Sawada H., Nishimural N., Suzuki E., Zhuang J., Hasegawa K., Takamatsu H., Honda K., Hasumi K., SMTP-7, a novel small-molecule thrombolytic for ischemic stroke: a study in rodents and primates. J Cereb Blood Flow Metab., 2014, -v. 34, -p.235–241.

  21. Hu W., Ohyama S., Narasaki R., Hasumi K., Selective production of staplabin and SMTPs in cultures of Stachybotrys microspora fed with precursor amines. J Antibiot., 2001,-v. 54, -p.962–966.

  22. Hu W., Kitano Y., Hasumi K., SMTP-4D, -5D, -6D, -7D and -8D, a new series of the non-lysine-analog plasminogen modulators with a D-amino acid moiety. J Antibiot., 2003, -v.56, -p.832–837.

  23. Nishimura Y., Suzuki E., Hasegawa K., Nishimura N., Kitano Y., Hasumi K., Pre-SMTP, a key precursor for the biosynthesis of the SMTP plasminogen modulators. J Antibiot., 2012,-v. 65, -p.483–485.

  24. Minagawa K., Kouzuki S., Nomura K., Yamaguchi T., Kawamura Y., Matsushima K., Tani H, Ishii K., Tanimoto Y., Kamigauchi T., Bisabosquals, novel squalene synthase inhibitors. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot., 2001a, -v. 54, -p.890–895.

  25. Minagawa K., Kouzuki S., Nomura K., Kawamura Y., Tani H., Terui Y., Nakai H., Bisabosquals, novel squalene synthase inhibitors. II. Physico-chemical properties and structure elucidation. J Antibiot., 2001b. -v. 54, -p.896–933.

  26. Snider B., Lobera M., Synthesis of the tetracyclic core of the bisabosquals. Tetrahedron Lett., 2004, -v. 46, -p.5015–5018

  27. Liu Z., Sun Y., Tang M., Sun P., Wang A., Hao Y, Trichodestruxins A-D: cytotoxic cyclodepsipeptides from the endophytic fungus Trichoderma harzianum harzianum. J. Nat. Prod., 2020, 83, -p. 3635–3641.

  28. Du F. Y., Ju G. L., Xiao L., Zhou Y. M., and Wu X, Sesquiterpenes and cyclodepsipeptides from marine-derived fungus Trichoderma harzianum longibrachiatum and their antagonistic activities against soil-borne pathogens. Mar. Drugs., 2020, -v.18, -p.165.

  29. Shi Z. Z., Fang S. T., Miao F. P., Yin X. L., and Ji N., Y. Trichocarotins A-H and trichocadinin A, nine sesquiterpenes from the marine-alga-epiphytic fungus Trichoderma harzianum virens. Bioorg. Chem., 2018a,-v. 81, -p. 319–325.

  30. Yamazaki H., Takahashi O., Kirikoshi R., Yagi A., Ogasawara T., Bunya Y., Epipolythiodiketopiperazine and trichothecene derivatives from the NaI-containing fermentation of marine-derived Trichoderma harzianum cf. brevicompactum. J. Antibiot., 2020a, -v. 73, -p. 559–567.

  31. Harwoko H., Daletos G., Stuhldreier F., Lee J., Wesselborg S., Feldbrьgge M., Dithiodiketopiperazine derivatives from endophytic fungi Trichoderma harzianum harzianum and Epicoccum nigrum. Nat. Prod. Res., 2021. -v. 35, -p.257–265.

  32. Zhao D. L., Zhang X. F., Huang R. H., Wang D., Wang X. Q., Li Y. Q., Antifungal nafuredinand epithiodiketopiperazine derivatives from the mangrove-derived fungus Trichoderma harzianum harzianum D13. Front. Microbiol. 2020, -v.11, -p.1495.

  33. Shi Z. Z., Miao F. P., Fang S. T., Yin X. L., and Ji N. Y., Sulfurated diketopiperazines froman algicolous isolate of Trichoderma harzianum virens. Phytochem. Lett. 2018b. -v. 27, -p. 101–104.

  34. Song Y., Miao F., Yin X., and Ji N., Three nitrogen-containing metabolites from an algicolous isolate of Trichoderma harzianum asperellum. Mar. Life Sci. Technol. 2020, -v. 2, -p. 155–160.

  35. Miyano R., Matsuo H., Mokudai T., Noguchi Y., Higo M., Nonaka K. Trichothioneic acid, a new antioxidant compound produced by the fungal strain Trichoderma harzianum virens FKI-7573. J. Biosci. Bioeng. 2020, -v.129, -p. 508–513.

  36. Yu J. Y., Shi T., Zhou Y., Xu Y., Zhao D. L., and Wang C. Y., Naphthalene derivatives and halogenate quinoline from the coral-derived fungus Trichoderma harzianum harzianum (XS-20090075) through OSMAC approach. J. Asian Nat. Prod. Res. 2021, -v. 23, -p. 250–257.

  37. Ding G., Chen L., Zhou C., Hong-Mei J., Liu Y. T., Chang X. Trichoderamides A and B, a pair of stereoisomers from the plant endophytic fungus Trichoderma harzianum gamsii. J. Antibiot. 2015. -v. 68, -p. 409–413.

  38. Wu B., Oesker V., Wiese J., Schmaljohann R., and Imhoff J. F. Two new antibiotic pyridones produced by a marine fungus, Trichoderma harzianum sp. strain MF106. Mar. Drugs., 2014. -v. 12, -p.1208–1219.

  39. Vinale F., Nigro M., Sivasithamparam K., Flematti G., Ghisalberti E. L., Ruocco M., Harzianic acid: a novel siderophore from Trichoderma harzianum harzianum. FEMS Microbiol. Lett., 2013. -v. 347, -p.123–129.

  40. Zhou P., Wu Z., Tan D., Yang J., Zhou Q., Zeng F. Atrichodermones A–C, three new secondary metabolites from thesolid culture of an endophytic fungal strain, Trichoderma harzianum atroviride. Fitoterapia., 2017. -v. 123, -p.18–22.

  41. Yin Y., Fu Q., Wu W., Cai M., Zhou X., Zhang Y., Producing Novel Fibrinolytic Isoindolinone Derivatives in Marine Fungus Stachybotrys longispora FG216 by the Rational Supply of Amino Compounds According to Its Biosynthesis Pathway. Mar. Drugs 2017, -v.15, -p.214.

  42. Lin T. W., Chang W. W., Chen C. C., Tsai Y. C., Stachybotrydial a potent inhibitor of fucosyltransferase and sialyltransferase. Biochem. Biophys. Res. Commun. 2005, -v.331, -p. 953–957.

  43. Zhang Y. G., Tian R. R., Liu S. C., Chen X. L., Liu X. Z., Che Y. S., Alachalasins A-G, new cytochalasins from the fungus Stachybotrys charatum. Bioorg Med Chem., 2008, -v. 16, -p.2627–2634.

  44. Hossain MA, Ahmed MS, Ghannoum MA Attributes of Trichoderma harzianum 22and its association with human disease. J Allergy Clin Immunol. 2004, -v.113, -p. 200–208.

  45. Cai F., Yu G., Wang P., Wei Z., Fu L., Shen Q., Harzianolide, a novel plant growth regulator and systemicresistance elicitor from Trichoderma harzianum harzianum. Plant Physiol. Biochem., 2013, -v.73, -p. 106–113.

  46. Bhardwaj N., Kumar J., Characterization of volatile secondary metabolites from Trichoderma harzianum asperellum. J. Appl. Nat. Sci., 2017, -v.9, -p.954–959.

  47. McMullin D. R., Renaud J. B., Barasubiye T., Sumarah M. W., Miller J. D., Metabolites of Trichoderma harzianum species isolated from damp building materials. Can. J. Microbiol. 2017. -v. 63, -p. 621–632.

  48. Keswani C., Mishra S., Sarma B. K., Singh S. P., Singh H. B., Unraveling the efficient applications of secondary metabolites of various Trichoderma harzianum spp. Appl. Microbiol. Biotechnol. 2014, -v.98, -p. 533–544.

  49. Zeilinger S., Gruber S., Bansal R., and Mukherjee P. K., Secondary metabolism in Trichoderma harzianum –chemistry meets genomics. Fungal Biol. Rev., 2016, -v.30, -p. 74–90.

  50. Li X. Q., Xu K., Liu X. M., and Zhang P. A systematicreview on secondary metabolites of paecilomyces species: chemical diversity and biological activity. Planta Med., 2020. -v. 86, -p. 805–821.

  51. Amagata T., Rath C., Rigot J. F., Tarlov N., Tenney K., Valeriote F. A., Crews P Structures and cytotoxic properties of trichoverroids and their macrolide analogues produced by saltwater culture of Myrothecium verrucaria. J Med Chem. 2003,-v. 46, -p. 4342–4350.

  52. Bondy G. S., Pestka J. J., Immunomodulation by fungal toxins. J Toxicol Environ Health B Crit Rev. 2000, -v. 3, -p. 109–143.

  53. Abbas H. K., Johnson B. B., Shier W. T., Tak H, Jarvis B. B., Boyette C. D., Phytotoxicity and mammalian cytotoxicity of macrocyclic trichothecene mycotoxins from Myrothecium verrucaria. Phytochemistry. 2002, 59, -p.309–313.

  54. Shimada A., Takeuchi S., Kusano M., Fujioka S., Kimura Y., Roridin. and verrucarin A, inhibitors of pollen development in Arabidopsis thaliana, produced by Cylindrocarpon sp. Plant Sci. 2004, -v. 166, -p.1307–1312.

  55. Andolfi A., Boari A., Evidente A., Vurro M., Metabolites inhibiting germination of Orobanche ramosa seeds produced by Myrothecium verrucaria and Fusarium compactum. J Agric Food Chem. 2005, -v. 53, -p.1598–1603.

  56. Nielsen K. F., Grafenhan T., Zafari D., Thrane U., Trichothecene production by Trichoderma harzianum brevicompactum. J Agric Food Chem. 2005, -v. 53, -p.8190–8196.

  57. Iordanov M. S., Pribnow D., Magun J. L., Dinh T. H., Pearson J. A., Chen S. L., Magun B. E., Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol Cell Biol. 1997, -v. 17, -p.3373–3381.

  58. Kinser S., Li M., Jia QS., Pestka J. J., Truncated deoxynivalenol-induced splenic immediate early gene response in mice consuming (n-3) polyunsaturated fatty acids. J Nutr Biochem. 2005, -v. 16, -p. 88–95.

  59. McCormick S. P., Harris L. J., Alexander N. J., Ouellet T., Saparno A., Allard S., Desjardins AETri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol. 2004. -v. 70, -p.2044–2051.

  60. Pestka J. J., Zhou H. R., Moon Y., Chung Y. J., Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett. 2004, -v. 153, -p.61–73.

  61. Chung Y. J., Jarvis B. B., Tak H., Pestka J. J., Immunochemical assay for satratoxin G and other macrocyclic trichothecenes associated with indoor air contamination by Stachybotrys chartarum. Toxicol Mech Methods. 2003, -v. 13, -p.247–252.

  62. EI-Kady I. A., Moubasher M. H., Some cultural conditions that control production of roridin E and satratoxin H by Stachybotrys chartarum. Crypto Mycol. 1982, -v.137, -p.151–162.

  63. Croft W. A., Jarvis B. B., Yatawara C. S., Airborne outbreak of trichothecene toxicosis. Atmos Environ, 1986.-v. 20:-p.549–552.

  64. Jarvis B. B., Stachybotrys chartarum: a fungus for our time. Phytochemistry. 2003, -v. 64, -p.53–60.

  65. Yike I, Miller M. J., Sorenson W. G., Walenga R J. F., Tomashefski J. R., Dearborn D. G., Infant animal model of pulmonary mycotoxicosis induced by Stachybotrys chartarum. Mycopathologia. 2001, -v.154, -p.139–152

  66. Giocobbe R. A., Huang L., Kong Y. L., Lam Y. T., Del Val S. M., Wichman C. F., Zink D. L., Drug for treating manic depression. Merck &Co., Inc, USA Gottschalk C, Bauer J, Meyer K Detection of satratoxin G and H in indoor air from a water-damaged building. Mycopathologia. 2008, -v. 166, -p.103–107.

  67. Eppley R. M., Mazzola E. P., Highet R. J., Bailey W. J., Structure of satratoxin H, a metabolite of Stachybotrys atra. Application of proton and carbon-13 nuclear magnetic resonance. J Org Chem. 1977, - v. 42, -p.240–243.

  68. Andersen B., Nielsen K. F., Jarvis B. B., Characterization of Stachybotrys from water-damaged buildings based on morphology, growth, and metabolite production. Mycologia. 2002, -v. 94, -p.392–403.

  69. Tuomi T., Reijula K., Johnsson T., Hemminki K., Hintikka E. L., Lindroos O Mycotoxins in crude building materials from water-damaged buildings. Appl Environ Microbiol. 2000, -v. 66, -p.1899–1904.

  70. Nielsen K. F., Huttunen K., Hyvarinen A., Andersen B., Jarvis B. B., Hirvonen M. R., Metabolite profiles of Stachybotrys spp. isolates from water damaged buildings and their capability to induce cytotoxicity and production of inflammatory mediators in RAW 264.7 macrophages. Mycopathologia. 2001, -v. 154, -p.201–205.

  71. Hinkley S. F., Jarvis B. B., Chromatograghic method for Stachybotrys toxins. In: Truchsess MW, Pohland AE (eds) Mycotoxin protocols. Human press, Totowa N.J. 2001, -p. 173–194.

  72. Bae H. K., Shinozuka J., Islam Z., Pestka J. J., Satratoxin G interaction with 40S and 60S ribosomal subunits precedes poptosis in the macrophage. Toxicol Appl Pharmacol. 2009, -v. 37, -p.137–145.

  73. Hastings C., Rand T., Bergen H. T., Thliveris J. A., Shaw A. R., Lombaert G. A., Mantsch H. H., Giles B. L., Dakshinamurti S., Scott J. E., Trichoderma harzianum 22alters surfactantrelated phospholipid synthesis and CTP: cholinephosphate cytidylyltransferase activity in isolated fetal rat type II cells. Toxicol Sci. 2005, -v. 84, -p.186–194.

  74. Hudson B., Flemming J., Sun G., Rand T. G., Comparison of immunomodulator mRNA and protein expression in the lungs of Trichoderma harzianum 22spore-exposed mice. J Toxicol Environ Health. 2005, -v. 68, -p. 1321–1335.

  75. Kankkunen P., Rintahaka J., Aalto A., Leino M., Majuri M. L., Alenius H., Wolff H., Matikainen S., Trichothecene mycotoxins activate inflammatory response in human macrophages. J Immunol. 2009, -v.182, -p. 6418–6425.

  76. McCrae K. C., Rand TG., Shaw R. A., Mantsch H. H., Sowa M. G., Thliveris J. A., Scott J. E., () DNA fragmentation in developing lung fibroblasts exposed to Trichoderma harzianum 22(atra) toxins. Pediatr Pulmonol. -2007, -v.42, -p.592–599.

  77. Shi Y., Porter K., Parameswaran N., Bae H. K., Pestka J. J., Role of GRP78/BiP degradation and ER stress in deoxynivalenol-induced interleukin-6 upregulation in the macrophage. Toxicol Sci.- 2009, -v.109, -p.247–255.

  78. Yike I., Rand T., Dearborn D. G., The role of fungal proteinases in pathophysiology of Stachybotrys chartarum. Mycopathologia. 2007, -v.164, -p.171–181.

  79. Takahashi-Ando N., Matsui K., Suzuki T., Sadamatsu K., Azuhata H., Okada A., Trichothecene biosynthesis in different fungal genera: resistance mechanisms, pathway enzymes, and their product applications. JSM Mycotoxins., 2020,-v. 70, -p.67–74.

  80. Shi Z. Z., Liu X. H., Li X. N., and Ji N. Y., Antifungal and antimicroalgal trichothecene sesquiterpenes from the marine algicolous fungus Trichoderma harzianum brevicompactum A-DL-9-2. J. Agric. Food Chem., 2020, -v. 68, -p. 15440–15448.

  81. Yamazaki H., Yagi A., Takahashi O., Yamaguchi Y., Saito A., Namikoshi M., Antifungal trichothecene sesquiterpenes obtained from the culture brothof marine-derived Trichoderma harzianum cf. brevicompactum and their structure- activity relationship. Bioorg. Med. Chem. Lett., 2020b, -v.30, -p.127375.

  82. Yin M., Fasoyin O. E., Wang C., Yue Q., Zhang Y., Dun B., Herbicidal efficacy of harzianums produced by the biofertilizer fungus, Trichoderma harzianum brevicompactum. AMB Express., 2020, -v. 10, -p.118.

  83. Cui J., Shang R. Y., Sun M., Li Y. X., Liu H. Y., Lin H. W. Trichoderma harzianum loids A-C, cadinane sesquiterpenes from a marine sponge symbiotic Trichoderma harzianum sp. SM16 fungus. Chem. Biodivers., 2020, -v.17, -p. e2000036.

  84. Shi T., Shao C. L., Liu Y., Zhao D. L., Cao F., Fu X. M. Terpenoids from the coral-derived fungus Trichoderma harzianum harzianum (XS-20090075) induced by chemical epigenetic manipulation. Front. Microbiol., 2020, -v.11, -p.572.

  85. Liu X. H., Hou X. L., Song Y. P., Wang B. G., and Ji N. Y. Cyclonerane sesquiterpenes and anisocoumarinderivative from the marine-alga-endophytic fungus Trichoderma harzianum citrinoviride A-WH-20-3. Fitoterapia., 2020, -v.141, -p.104469.

  86. Song Y. P., Fang S. T., Miao F. P., Yin X. L., and Ji N. Y. Diterpenes and sesquiterpenes from the marine algicolous fungus Trichoderma harzianum harzianum X-5. J. Nat. Prod., 2018, -v.81, -p.2553–2559.

  87. Speck K., Magauer T., The chemistry of isoindole natural products. J Org Chem. 2013, -v. 9, -p.2048–2078.

  88. Geris R., Simpson T. J., Meroterpenoids produced by fungi. Nat Prod Rep. 2009.-v. 26, -p.1063–1094.

  89. Li Y., Wu C. M., Liu D., Proksch P., Guo P., Lin W. H., Chartarlactams A-P, phenylspirodrimanes from the sponge-associated fungus Trichoderma harzianum 22with antihyperlipidemic activities. J Nat Prod. 2014a.-v. 77, -p.138–147.

  90. Kaise H., Shinohara M., Miyazaki W., Izawa T., Nakano Y., Sugawara M., Sugiura K., Structure of K-76, a complement inhibitor produced by Stachybotrys complementi, nov. sp. K-76. J Chem Soc Chem Commun. 1979.-v.79, -p.726–727.

  91. Miyazaki W., Tamaoka H., Shinohara M., Kaise H., Izawa T., Nakano Y., Kinoshita T., Hong K., Inoue K., A complement inhibitor produced by Stachybotrys complementi, now. sp. K-76, a new species of fungi imperfecti. Microbiol Immunol. 1980.-v. 24, -p.1091–1108.



Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   27   28   29   30   31   32   33   34   35




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish