§ 3.4 Закон сохранения момента импульса
Рассмотрим частый случай вращательного движения, когда суммарный момент внешних сил равен нулю. При вращательном движении тела каждая его частица движется с линейной скоростью υ = ωr, [r, — радиус окружности, которую описывает частица массой m, ω — угловая скорость, одинаковая для всех точек тела].
Момент импульса вращающегося тела равен сумме моментов
импульсов отдельных его частиц:
(3.18)
Изменение момента импульса равно импульсу момента сил:
dL=d(Jω)=Jdω=Mdt (3.19)
Если суммарный момент всех внешних сил, действующих на систему тела относительно произвольной неподвижной оси, равен нулю, т.е. М=0, то dL и векторная сумма моментов импульсов тел системы не изменяется с течением времени.
Сумма моментов импульсов всех тел изолированной системы сохраняется неизменной (закон сохранения момента импульса):
d(Jω)=0 Jω=const (3.20)
Согласно закону сохранения момента импульса можно записать
J1ω1= J2ω2 (3.21)
где J1 и ω1 - момент инерции и угловая скорость в начальный момент времени, а и J2 и ω2 – в момент времени t.
Из закона сохранения момента импульса следует, что при М=0 в процессе вращения системы вокруг оси любое изменение расстояния от тел до оси вращения должно сопровождаться изменением скорости их обращения вокруг этой оси. С увеличением расстояния скорость вращения уменьшается, с уменьшением – возрастает. Например, гимнаст, совершающий сальто, чтобы успеть сделать в воздухе несколько оборотов, во время прыжка свёртывается клубком. Балерина или фигуристка, кружась в пируэте, разводит руки если хочет замедлить вращение, и, наоборот, прижимает их к телу, когда старается вращаться как можно быстрее.
§ 3.5 Кинетическая энергия вращающегося тела
Определим кинетическую энергию твёрдого тела, вращающегося вокруг неподвижной оси. Разобьем это тело на n материальных точек. Каждая точка движется с линейной скоростью υi=ωri, тогда кинетическая энергия точки
или
Полная кинетическая энергия вращающегося твердого тела равна сумме кинетических энергий всех его материальных точек:
(3.22)
(J - момент инерции тела относительно оси вращения)
Если траектории всех точек лежат в параллельных плоскостях (как у цилиндра, скатывающегося с наклонной плоскости, каждая точка перемещается в своей плоскости рис ), это плоское движение. В соответствии с принципом Эйлера плоское движение всегда можно бесчисленным количеством способов разложить на поступательное и вращательное движение. Если шарик падает или скользит вдоль наклонной плоскости, он двигается только поступательно; когда же шарик катится – он ещё и вращается.
Если тело совершает поступательное и вращательное движения одновременно, то его полная кинетическая энергия равна
(3.23)
Из сопоставления формул кинетической энергии для поступательного и вращательного движений видно, что мерой инертности при вращательном движении служит момент инерции тела.
§ 3.6 Работа внешних сил при вращении твёрдого тела
При вращении твёрдого тела его потенциальная энергия не изменяется, поэтому элементарная работа внешних сил равна приращению кинетической энергии тела:
dA = dE или
Учитывая, что Jβ = M, ωdr = dφ, имеем α тела на конечный угол φ равна
(3.25)
При вращении твёрдого тела вокруг неподвижной оси работа внешних сил определяется действием момента этих сил относительно данной оси. Если момент сил относительно оси равен нулю, то эти силы работы не производят.
Do'stlaringiz bilan baham: |