Chiziqli tenglamalar sistemasini Gauss va Kramer usullari bilan yechish.
Sistemaning umumiy yechimi. Gauss usuli. Gauss usulining Gauss-Jordan modifikatsiyasi
m ta noma`lumli n ta chiziqli tenglamalar sistemasi berilgan bo`lsin.
Agar sistema tenglamalarining birida xk (k = {1, 2, …, m}) noma`lum +1 koeffitsient bilan qatnashib, qolgan barcha tenglamalarida xk noma`lumli hadlar mavjud bo`lmasa yoki yo`qotilgan bo`lsa, siste-ma xk noma`lumga nisbatan ajratilgan yoki xk noma`lum sistemaning ajratilgan noma`lumi deyiladi. Ajratilgan noma`lum bazis noma`lum deb ham yuritiladi.
Sistemaning har bir tenglamasi ajratilgan yoki bazis noma`lumga ega ko`rinishiga noma`lumlari ajratilgan yoki bazisga keltirilgan sistema deyiladi. Har qanday birgalikdagi sistema o`zining ajratilgan yoki bazis noma`lumlari tizimi mavjudligi bilan xarakterlanadi. Noma`lum-lari ajratilgan yoki bazisga keltirilgan sistemaning ajratilgan yoki bazis noma`lumlari tizimiga tegishli bo`lmagan noma`lumlari ajratilmagan, ozod yoki erkli noma`lumlar deb ataladi. Masalan, quyidagi
noma`lumlari ajratilgan yoki bazisga keltirilgan sistemada x1, x3 va x4 ajratilgan yoki bazis noma`lumlar bo`lsa, x2 va x5 noma`lumlar esa ozod yoki erkli noma`lumlardir.
Agar noma`lumlari ajratilgan yoki bazisga keltirilgan sistemaning har bir noma`lumi uning ajratilgan yoki bazis noma`lumlari tizimiga tegishli bo`lsa, sistema aniq, ya`ni yagona yechimga ega bo`ladi. Agarda noma`lumlari ajratilgan sistema erkli noma`lumlarga ham ega bo`lsa, aniqmas, ya`ni cheksiz ko`p yechimlarga ega bo`ladi.
Berilgan dastlabki shakldagi sistemaning umumiy yechimi deb, unga teng kuchli bo`lgan noma`lumlari ajratilgan yoki biror-bir bazisga keltirilgan sistemaga aytiladi.
Sistemaning umumiy yechimini qurish usuliga esa Gauss usuli deyiladi. Sistemaning barcha yechimlarini topish uchun uning umumiy yechimini qurish yetarli. Berilgan sistemaning umumiy yechimini aniq-lash uchun uning ustida quyidagi elementar almashtirishlar bajariladi:
1) sistema tenglamalari o`rinlarini almashtirish mumkin;
2) sistema biror-bir tenglamasi ikkala qismini biror noldan farqli songa ko`paytirish mumkin;
3) sistema biror-bir tenglamasiga uning boshqa tenglamasini songa ko`paytirib, qo`shish mumkin.
Sonli to’plamlar.
Matematikaning asosiy tushunchalaridan biri son tushunchasi hisoblanadi. Son haqidagi tushuncha qadimda paydo bo`lib, uzoq vaqt davomida kengaytirilib va umumlashtirib borilgan. Eng avval sanashda ishlatiladigan sonlar: 1, 2, 3, … n … hosil bo`lgan, bu sonlar natural sonlar deyiladi. Natural sonlar to`plami N bilan belgilanadi: N= {1, 2, … n …}. Eng kichik natural son 1, eng kattasi mavjud emas. Har bir natu-ral sondan keyin ma`lum bitta natural son keladi; 3 dan keyin albatta 4 keladi, 100 dan keyin – 101 va hokazo.
Natural sonlar to`plami ustida faqat ikkita amal: qo`shish va ko`paytirish bajariladi. Agar bo`lsa, bo`ladi.
Do'stlaringiz bilan baham: |