Transactions on Industrial Informatics



Download 273,17 Kb.
Pdf ko'rish
bet5/11
Sana20.07.2022
Hajmi273,17 Kb.
#825720
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
cheng2016

1)
 
Variables and Membership Functions
In vehicle grouping, three fuzzy variables are used as input, 
which reflect the current traffic condition at the intersection:
 
-- 
Group size (GSZ)
: the number of vehicles currently in the 
ending group. 
 
-- 
Average waiting time (AWT)
: the average waiting time of the 
vehicles in the ending group. 
 
-- 
Difference from concurrent groups (DIF)
: The difference in 
size between the current group and its concurrent groups.
Fig. 2. Architecture of neuro-fuzzy traffic control system 


1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2016.2590302, IEEE
Transactions on Industrial Informatics

The output of the fuzzy logic is benefit:
 
-- 
Benefit
(
BNT
): the benefit of including the current vehicle 
into the ending group. Here, “benefit” refers to benefit 
may be obtained in efficiency (i.e., average waiting time) 
and fairness. 
As shown in Fig. 3, each of the input variables has three 
linguistic values, and the output fuzzy variable has five 
linguistic values. The membership functions of all these 
linguistic values are of the form of triangular function. By fine-
tuning the position of three corners of the triangular, the shape 
and location of the membership function may change. 
When vehicle
 i 
enters the queue area of intersection, it sends 
a request message to the controller node. The request message 
carries two data items: vehicle id and lane id. Upon receiving 
the request message from vehicle
i
, the controller needs to 
decide on which group 

should be included into, based on the 
current traffic status of the whole intersection. 
First, the traffic controller examines current traffic condition 
and gets measurement of three fuzzy input variables, i.e., GSZ, 
AWT and DIF. Then the controller computes BNT through 
neuro-fuzzy network with pre-defined fuzzy rule base. If the 
output value is higher than a threshold value, the new vehicle 
will be included into the ending group. Otherwise, a new group 
is established for that vehicle. The fuzzy rule base is described 
in the following section. 
2)
 
Fuzzy Rules Base and Fuzzy Inference 
Table I shows the fuzzy rule base for grouping. It consists of 
20 rules to infer the benefit of joining the ending group for a 
newly-arrived vehicle. The underlying idea in designing these 
rules is to follow the properties for groups mentioned before:
i) Groups in concurrent lanes should have similar sizes.
ii) The waiting time of vehicles in the same group should 
be similar, and the difference in average waiting time 
among different groups in the same lane should be 
obvious. 
For example, Rule 1:
“if GSZ is Small and AWT is Short and 
DIF is Smaller, then BNT is VeryHigh”
indicates to increase the 
current group so as to reduce the difference in group size. At 
the same time, since AWT is short, the vehicles in the current 
group arrived not a long time ago, and including the newly-
arrived vehicle into the group will not affect fairness much. 
Therefore, in such a case, the newly-arrived vehicle should join 
the current group rather than create new group. Another 
example, Rule 19: “
if GSZ is Large and AWT is Medium and 
DIF is Larger, then BNT is VeryLow
” means to stop including 
newly-arrived vehicle into the group. Since the group size is 
large enough, and including new vehicle into it will enlarge the 
difference in group size with concurrent group. Moreover, 
because the AWT is medium, the difference in waiting time 
between vehicles in group and the newly-arrived vehicle is 
quite obvious. From the point of view of fairness, it is beneficial 
to establish a new group for that vehicle. 
Fuzzy inference is applied to combine these rules into a 
mapping from fuzzy input set to fuzzy output set. As described 
in Section III, for each rule in the rule base, cell in layer 3 
computes the firing strength by combining all the membership 
degrees of antecedent labels in the rule through 
softmin
operation. For the consequent part, cell in layer 4 computes the 
defuzzified value according to the firing strength supplied to it. 
Local mean-of–maximum (LMOM) is used as the 
defuzzification method. Finally, the output is the sum of all the 
defuzzified values, weighted by rule firing strength values.
 
3)
 
Learning in Vehicle Grouping 
As mentioned earlier, we adopt reinforcement learning as the 
learning
algorithm of our neuro-fuzzy network for vehicle 
grouping. In our system, the output of evaluation network 
v
, is 
a measurement of the performance of our system. Thus, the goal 
of vehicle grouping is to maximize 
v
. The action taken by the 
neuro-fuzzy network can be denoted as 
F

Download 273,17 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish