Transactions on Industrial Informatics



Download 273,17 Kb.
Pdf ko'rish
bet4/11
Sana20.07.2022
Hajmi273,17 Kb.
#825720
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
cheng2016

B.
 
Evaluation Network 
The evaluation network is used to evaluate the goodness of 
the action of fuzzy controller. It is a standard two-layer 
feedforward network with 

hidden layer cells and 

input cells 
from the environment. Each input cell measures the queue 
length of waiting vehicle at each lane. Each hidden layer cell 
collects weighted inputs from the first layer and computes 
activated output using a sigmoidal function: 
𝑦
𝑖
= 𝑔(∑ 𝑎
𝑗𝑖
∗ 𝑄𝐿
𝑗
)
𝑛
𝑗=1
(1)
where, 
𝑔(𝑠) =
1
1 + 𝑒
−𝑠
(2)
The output layer of the evaluation network receives input 
values from both the input layer and the hidden layer. The 
output 

is a measurement of the goodness of the network, i.e., 
prediction of future reinforcement 
[1]. 
𝑣 = ∑ 𝑏
𝑖
∗ 𝑄𝐿
𝑖
𝑛
𝑖=1
+ ∑ 𝑐
𝑗
∗ 𝑦
𝑗

𝑗=1
(3)
The prediction of future reinforcement is combined with 
external 
performance 
measure 
to 
compute 
internal 
reinforcement 
ȓ.
ȓ(𝑡) = 𝑟(𝑡) + 𝛾𝑣(𝑡) − 𝑣(𝑡 − 1) (4)
In Eq. (4), 
r(t)
is the change in average waiting time between 
two successive learning cycles, and 
ϒ
(0 
ϒ
1) indicates the 
discount rate
to set less significance on 
v
at time 
t
than that at 
the previous time step. The internal reinforcement is used to 
guide the fuzzy controller network in decision making. For 
example, if the system moves from a state with low 
v
to a state 
with high 
v
, the positive change can reinforce the selection of 
the action that caused this move. 
Learning in evaluation network adopts the gradient descent 
algorithm, as in common neural networks. If a positive 
(negative) internal reinforcement is received, network weights 
are rewarded (punished) by changes in the direction that 
increases (decreases) its contribution to the total sum. The 
weights of the links connecting input and output are updated 
according to the following: 
𝑏
𝑖
[𝑡 + 1] = 𝑏
𝑖
[𝑡] + 𝛽ȓ[𝑡 + 1]𝑄𝐿
𝑖
[𝑡] (5)
where, 
β
= 0.1 is a constant and 
ȓ[𝑡 + 1]
is the internal 
reinforcement at time 
t
+1. 
The weights of the connections between the hidden layer 
cells and the output cell are updated as follows: 
𝑐
𝑖
[𝑡 + 1] = 𝑐
𝑖
[𝑡] + 𝛽ȓ[𝑡 + 1]𝑦
𝑖
[𝑡] (6) 
The weights of the connections between input and hidden: 
𝑎
𝑖𝑗
[𝑡 + 1] = 𝑎
𝑖𝑗
[𝑡]
+ 𝛽

ȓ[𝑡 + 1]𝑦
𝑖
[𝑡] (1
− 𝑦
𝑖
[𝑡]) sgn(𝑐
𝑖
[𝑡])𝑄𝐿
𝑖
[𝑡] (7)
where, 
𝛽

= 0.3 and 
sgn()
is a sign function. 
C.
 
Vehicle Grouping 
The goal of intersection control is to reduce average waiting 
time and improve fairness. Then, vehicle groups should have 
the following properties: 
i) Groups at concurrent lanes should have similar size. This 
can improve the utility of intersection space and reduce 
average waiting time.
ii) The waiting time of vehicles in the same group should be 
similar. This can help achieve high fairness. 
To deal with the complexity and variation of traffic volume 
at intersections, we adopt a neuro-fuzzy network to grouping 
vehicles, as shown in Fig. 3. By updating the weight parameters 
through reinforcement learning, the neuro-fuzzy network can fit 
various traffic conditions. 

Download 273,17 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish