Transactions on Industrial Informatics


p ( x ), where  x is system  input and  p



Download 273,17 Kb.
Pdf ko'rish
bet6/11
Sana20.07.2022
Hajmi273,17 Kb.
#825720
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
cheng2016

p
(
x
), where 
x
is system 
input and 
p 
is the vector of weight parameters of the network, 
i.e. the weight parameters on the connection between layer 1 
and layer 2 and those between layer 3 and layer 4. Hence, the 
objective of learning is fine-tuning 
p
so as to maximize 
v
. The 
can be done by gradient descent, which estimates the derivative 
∂v/∂p, and uses the following learning rule to update the 
parameter value.
Fig. 3. The neuro-fuzzy network for grouping 
TABLE

F
UZZY RULES FOR GROUPING
No. 
Input 
Output 
GSZ
AWT
DIF
BNT

Small 
Short 
Smaller 
VeryHigh 

Small 
Short 
Almost 
VeryHigh 

Small 
Medium 
Smaller 
VeryHigh 

Small 
Medium 
Almost 
VeryHigh 

Small 
Long 
Smaller 
VeryHigh 

Small 
Long 
Almost 
VeryHigh 

Medium 
Short 
Smaller 
VeryHigh 

Medium 
Short 
Almost 
Normal 

Medium 
Short 
Longer 
Low 
10 
Medium 
Medium 
Smaller 
High 
11 
Medium 
Medium 
Almost 
Normal 
12 
Medium 
Medium 
Longer 
Low 
13 
Medium 
Long 
Smaller 
High 
14 
Medium 
Long 
Almost 
Normal 
15 
Medium 
Long 
Longer 
Low 
16 
Large 
Short 
Almost 
Low 
17 
Large 
Short 
Longer 
Low 
18 
Large 
Medium 
Almost 
Low 
19 
Large 
Medium 
Longer 
VeryLow 
20 
Large 
Long 
Any 
VeryLow 


1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2016.2590302, IEEE
Transactions on Industrial Informatics

𝑝
𝑛𝑒𝑤
= 𝑝 + 𝜂
𝜕𝑣
𝜕𝑝
= 𝑝 + 𝜂
𝜕𝑣
𝜕𝐹
𝜕𝐹
𝜕𝑝
(8)
The dependence of 
v
on 
F
is indirect, because both of them 
are state specific. Since ∂v/∂F is hard to compute, it’s 
approximated as follows, where 
sgn()
is a sign function. 
𝜕𝑣
𝜕𝐹
= sgn (
𝑣(𝑡) − 𝑣(𝑡 − 1)
𝐹(𝑡) − 𝐹(𝑡 − 1)
) (9)
Since 
F
is known and differentiable, ∂F/∂p is much easier to 
compute. In the following formula, Con(
R
j
) and Ant(
R
j
) is the 
consequent and antecedent label used by rule 
j
. A label 
V
is 
parameterized by 
p
v
, which represents any one of the 
parameters of the membership function of that label. 
F
is a 
weighted sum of all individual rule output as below, where 
f
i
and 
w

denote the output and firing strength of rule 
i

F =
∑ 𝑤
𝑖
𝑓
𝑖
𝑖
∑ 𝑤
𝑖
𝑖
(10)
As discussed in Section III, several rules may use the same 
linguistic value as their consequent label. For consequent labels 
V
with parameter 
p
v
, all rules 
i
which use 
V
in their consequent 
Download 273,17 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish