Transactions on Industrial Informatics


Index Terms—Intelligent transportation system, intersection



Download 273,17 Kb.
Pdf ko'rish
bet2/11
Sana20.07.2022
Hajmi273,17 Kb.
#825720
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
cheng2016

Index Terms—Intelligent transportation system, intersection 
control, neuro-fuzzy network, smart transportation, vehicular 
networks
I.
I
NTRODUCTION
EHICULAR
networks, especially Vehicular Ad hoc 
NETwork (VANET) [12] [31] have been recently 
considered in intelligent transportation systems (ITS) [29] 
[38][39] to achieve high accuracy, efficiency and flexibility. 
Among others, intersection control has been always a key issue 
in ITS for the construction of smart cities. The key point is how 
to schedule traffic signal efficiently according to traffic volume 
information so as to reduce waiting time and improve fairness. 
Most existing works on intersection control adopt traffic light 
based approach, including fixed rotation of green light [28][34], 
traffic detector based adaptive scheduling [4][9][13][26][35]. 
VANET based intersection control is a new approach 
developed recently [4][11][7][8]. With VANETs, one vehicle 
can communicate with other vehicles (V2V) or infrastructures 
(V2I) via wireless links. Then, mobility state information of 
individual vehicles, e.g. id, speed and position, can be collected 
and integrated into traffic signal scheduling. Therefore, 
VANET based inter-section control algorithms are more 
flexible and efficient than detector based ones.
Our algorithm is also VANET based, where V2I 
communications are used to collect vehicles’ mobility 
information. However, different from existing works, which 
schedule vehicles indirectly via traffic lights, we schedule 
vehicles directly via wireless communications between the 
controller and vehicles. More importantly, we propose to 
reduce the granularity of scheduling by grouping vehicles, 
rather than scheduling all waiting vehicles in a lane. Waiting 
vehicles in the same lane are divided into groups dynamically, 
according to real-time traffic conditions. Then, only head 
groups of different lanes are considered in traffic scheduling. 
The permit of passing is sent to the selected head group via V2I 
communications.
Our design has two major advantages against existing 
algorithms. Firstly, group based scheduling reduces average 
waiting time, especially when traffic flows in concurrent lanes 
are imbalanced or the flow varies largely from time to time. By 
grouping vehicles dynamically in a real-time way, vehicles in 
concurrent lanes are divided into groups with similar size, and 
more concurrent passing is enabled so as to improve system 
efficiency. Secondly, group based scheduling improves fairness. 
With groups, vehicles arriving much later than previous 
vehicles in the same lane will be divided into a new group and 
not scheduled together with previous vehicles.
However, grouping vehicles is not a trivial task due to the 
dynamics of traffic conditions. To achieve high efficiency, 
groups at concurrent lanes should have similar size. On the 
other hand, vehicles with much different arrival time should be 
grouped into different groups so as to improve fairness. 
Therefore, grouping must be done with various factors 
considered in real-time way.
Since traffic volume change is complex and the number of 
vehicles may be quite large, it is really hard to model the 
intersection scheduling problem using accurate mathematics 
methods. Scheduling with groups is even harder. To cope with 
such challenges, we use neuro-fuzzy control for grouping and 
scheduling vehicles. Neuro-fuzzy [1][17] utilizes both the 
linguistic, human-like reasoning ability of fuzzy logic and the 
powerful computing and learning ability of neural network. 
Since the desired output is usually unavailable in traffic 
control, network training before deployment is impossible. To 
cope with such difficulty, we adopt reinforcement learning [23] 
to adjust the parameters in the neural network, which does not 
require a training procedure. 
Our major contributions include: 1) Propose the approach of 
grouping vehicles using fuzzy logic in vehicle scheduling at 
intersections; 2) Design a neuro-fuzzy network for vehicle 
grouping and scheduling, and reinforcement learning is adopted 
to adjust network parameters; 3) Conduct simulations using ns3 
to evaluate the performance of the proposed approach and 
compare it with existing work.
The rest of the paper is organized as follows. Section II 
reviews existing intersection control algorithms, especially 
those based on VANETs. The system model assumed is 
presented in Section III. Section IV describes our intersection 
control algorithm, including system architecture, fuzzy rules 
and detailed operations in grouping and scheduling. 
Performance evaluation is reported in Section V. Finally, 
Section VI concludes the paper with future directions.
Fuzzy Group based Intersection Control via 
Vehicular Networks for Smart Transportations 



1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2016.2590302, IEEE
Transactions on Industrial Informatics

II.
R
ELATED 
W
ORK
Traffic control at intersections has been studied for decades 
and many approaches, algorithms have been proposed. We 
categorize existing works into two classes, according to 
whether traffic signal/light is used.
Most existing works on intersection control are traffic signal 
based [13] [26] and the key issue is to determine a good signal 
scheduling plan. Signal scheduling can also be modeled as a 
combinatorial optimization problem and the optimal scheduling 
plan can be calculated via various methods such as dynamic 
programming [3][24], branch-and-bound [16] and linear 
programming [19]. Unfortunately, due to the dynamics of 
traffic load, traffic control systems are large complex nonlinear 
stochastic systems, so determining the optimal time of green 
light is very hard even if not impossible [5][6].
To cope with the complexity of traffic dynamics, mathematic 
models and computational intelligence [34] have been widely 
used in traffic signal scheduling and many algorithms have been 
proposed, including genetic based algorithms [15], fuzzy logic 
based algorithms [25], neural network based algorithm [27], 
neuro-fuzzy based algorithm [2] and machine learning based 
algorithms [23]. These algorithms focus on how to reduce the 
waiting time upon real-time traffic volume information, with 
either an isolated intersection or network of intersections 
considered. VANET has also been used in traffic signal 
scheduling to collect detailed vehicle information, including id, 
speed and position. With such accurate and efficient scheduling 
can be achieved [11][23] [32].
Besides traffic signal scheduling, autonomous vehicle 
controlling via agent based approach [5][6] or maneuver 
manipulation [10][14][21][22]. Without using a traffic signal, 
such approaches calculate the optimal trajectory for each 
vehicle so that vehicles can safely pass the intersection without 
colliding with each other. Since the speed and position of each 
vehicle need to be accurately calculated, the optimization is 
very complex, especially when the number of vehicles is large.
Our traffic control system also assumes autonomous vehicles. 
However, different from the existing works, our algorithm 
adopts neuro-fuzzy network to schedule vehicles and optimize 
scheduling strategy. With the powerful reasoning and learning 
ability of neuro-fuzzy network, our traffic control system is 
more efficient and more adaptive to real-time traffic condition. 
III.
SYSTEM
MODEL 
A.
 
The Intersection and Lanes 
We consider a typical intersection with four directions, i.e., 
north, south, east, and west, as shown in Fig. 1. In each direction, 
there are two lanes, for going forward and turning left 
respectively. Obviously, the path of a vehicle in the intersection 
area is determined by the lane it is in. 
The small dashed rectangle represents the core area of the 
intersection. A vehicle in this area is called to be “passing” the 
intersection. The large dashed rectangle represents the queue 
area. A vehicle in this area is viewed as in the waiting queue to 
pass the intersection. 

Download 273,17 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish