To’plam deganda nimani tushunasiz va misollar keltiring



Download 1,74 Mb.
bet23/28
Sana19.04.2022
Hajmi1,74 Mb.
#564378
1   ...   20   21   22   23   24   25   26   27   28
Bog'liq
1-kurs savollari matematika savol javob

1-turga oid masala: 48 ta qalam 6 ta qutichaga baravardan solingan bo’lsa, har bir qutichaga nechtadan qalam joylangan?
2-turga oid masala: 48 ta qalam 6 tadan qilib qutichalarga solingan bo’lsa, nechta quticha kerak bo’ladi?
Bo’lishni ko’paytirishga teskari amal sifatida ham ta’riflash mumkin:
13-ta’rif.a va b nomanfiy butun sonlar bo’linmasi deb, a = bc tenglik bajariladigan c nomanfiy butun songa aytiladi.
1.12. Nomanfiy butun sonlar bo’linmasining mavjudligi va yagonaligi.
Bo’lishning mavjudligi haqidagi masala n(A) = a bo’lgan A to’plamni teng quvvatli qism to’plamlarga ajratish mumkinligi masalasi bilan bog’liq. Agar A to’plamni berilgan b sondagi yoki quvvatdagi sinflarga ajratish mumkin bo’lsa, a ning b songa bo’linmasi mavjud bo’ladi.
4-te o r e m a. a sonining b songa bo’llinmasi mavjud bo’lsa, u yagonadir.
Isbot. Haqiqatan ham, a : b = c va a : b = d va d son c sondan farqli bo’lsin. Ta’rifga ko’ra a = bc va a = bd. Bundan bc = bd va ko’paytmaning qisqaruvchanligiga ko’ra c = d ekanligi kelib chiqadi.
5-teorema.a nomanfiy butun son b natural songa bo’linishi uchun a son b sondan kichik bo’lmasligi zarur.
Isboti. ava b natural sonlarning bo’linmasi mavjud bo’lsin, ya’ni a = bc shartni qanoatlantiruvchi c natural soni topilsin.
Istalgan c natural son uchun 1 ≤ c o’rinli. Ko’paytmaning monotonligiga ko’ra , bc = a b 1 = b ekani hisobga olinsa,
b a ekani kelib chiqadi.
Lekin ba shartning bajarilishi a : b bo’linma mavjud bo’lishi uchun yetarli emas.
Masalan, 3 ≤ 19, lekin 19 soni 3 ga bo’linmaydi. Bunday hollarda qoldiqli bo’lish haqida gapiriladi. Agar ba va a soni b ga bo’linmasi, shunday q, r natural sonlar topiladiki, rbo’lib, a = bq + r va tenglik bajariladi. (a; b) juftlik uchun yuqoridagi shartni qanoatlantiruvchi (q; r) sonlarning topilishi a ni b ga qoldiqli bo’lish deyiladi. Bu yerda qto’liqsiz bo’linma va r — qoldiq deyiladi, a: b = q (r qoldiq) shaklida yoziladi.
0 ni va 0 ga bo’lish masalasiga alohida to’xtab o’tamiz. a = 0 va b≠0 holida 0:6 = 0 tenglik bajariladi, chunki 0 = b·0. Demak, 0 ning 0 dan farqli istalgan songa bo’linmasi 0 ga teng. Lekin 0 ga bo’lish amali aniqlanmagan. Faraz qilaylik, noldan farqli a sonning 0 ga bo’linmasi mavjud vauc songa teng bo’lsin, ya’ni a≠0 a : c. Bundan a = 0 · c = 0 qarama-qarshilik kelib chiqadi. 0 : 0 = c bo’lsin, bu holda 0 = 0 c tenglik istalgan c son uchun o’rinli bo’ladi, bu esa amal natijasi yagona bo’lish shartiga zid

104

Nomanfiy butun sonlar ayirmasi, uning mavjudligi va yagonaligini tushuntiring

8 -ta’rif. Butun nomanfiy a va b sonlarning ayirmasi deb, n(A) = a, n(B) = b va shartlar bajarilganda, B to’plamni A to’plamgacha to’ldiruvchi to’plam elementlari soniga aytiladi(II.l-rasm).
a - b =n( ) bu yerda a = n(A),b = n(B), .
Miso1. Berilgan ta’rifdan foydalanib, 7-4 = 3 bo’lishini tushuntiramiz. 7 — biror A to’plamning elementlari soni, 4 — shu A to’plamning qism to’plami bo’lganB to’plamning elementlari soni bo’lsin. Masalan: A = {x; y; z; t; p; r,s}, B = {x; y; z; t} to’plamlarni olaylik. B to’plamning A to’plamgacha to’ldiruvchisini topamiz: ( ) = {p; r; s}, n( ) = 3. Demak, 7-4 = 3 bo’lar ekan. a - b ayirma n(A) = a, n(B) = b va shartlarni qanoatlantiruvchi A va B to’plamlarning tanlanishiga bog’liq emas.

Download 1,74 Mb.

Do'stlaringiz bilan baham:
1   ...   20   21   22   23   24   25   26   27   28




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish