Thesis · April 2020 doi: 10. 13140/RG


АНИҚ ИНТЕГРАЛНИ АЙРИМ МАТЕМАТИК МАСАЛАЛАРИНИ ЕЧИШГА



Download 10,51 Mb.
Pdf ko'rish
bet162/710
Sana20.07.2022
Hajmi10,51 Mb.
#826645
1   ...   158   159   160   161   162   163   164   165   ...   710
Bog'liq
Хасанхонга 420 бетда

АНИҚ ИНТЕГРАЛНИ АЙРИМ МАТЕМАТИК МАСАЛАЛАРИНИ ЕЧИШГА 
ТАТБИҚЛАРИ 
 
Акбаров У.Й., Ҳайдарова М.И., Олимова Д.Б.
 
– Қўқон ДПИ,Ўзбекистон. 
 
Аннотация: 
Ушбу мақолада, бир қатор мисоллар орқали интеграл ҳисобнинг таъриф 
ва айрим хоссаларини айний алмаштиришларга, тенгсизликларни исботлашга, йиғиндини ва 
лимитларни ҳисоблашга қўллаш имкониятлари кўрсатилаган. 
Таянч тушунчалар
: интеграл, аниқ интеграл, ҳосила, айният, йиғинди, қатор, лимит. 
Аннотация: 
В данной статье с помощью ряде примеров показаны возможность 
применения определение и простейших свойств интегрального исчисления в тождественных 
преобразованиях, при доказательстве неравенств, для вычисления суммы и пределов. 
Annatation: 
In given clause with the help of several examples are shown an opportunity of 
application definition and elementary properties of integrated calculation in identical 
transformations, at the proof of inequalities, for calculation of the sum and limits. 

Маълумки, ҳосила, интеграл ва аниқ интеграл тушунчалари умумтаълим 


мактабларида 1970 йиллар ўрталаридан бошлаб ўқитила бошланган. Интегрални татбиқлари 
масалаларига келганда эса фақат аниқ интегрални татбиқлари ҳақида тўҳталиниб, эгри 


ЗАМОНАВИЙ УЗЛУКСИЗ ТАЪЛИМ СИФАТИНИ ОШИРИШ: ИННОВАЦИЯ ВА ИСТИҚБОЛЛАР
 
144 
ХАЛҚАРО МИҚЁСИДАГИ ИЛМИЙ-АМАЛИЙ КОНФЕРЕНЦИЯ МАТЕРИАЛЛАРИ
чизиқли трапециянинг юзини ҳисоблаш, айланма жисмларни хажмини ҳисоблаш ва хоказо 
каби масалаларни ечишга татбиқлари ҳақида кўпроқ гапирилади ва улар ўқув адабиётларида 
ҳам акс этган. Лекин, интегрални қўллаб кўпгина математик масалаларни жумладан
элементар математика масалаларини, айрим лимитлар, қаторлар йиғиндисини ҳисоблаш 
масалаларини осон ва самарали ҳал қилиш мумкин бўлиб, бундай маълумотлар умумтаълим 
мактаблари ўқув адабиётларида ҳам, интегралнинг татбиқларига бағишланган адабиётларда 
ҳам акс этмаган. Бу ишда шундай масалалардан айримларини кўрсатиб ўтамиз. 
1.
Тригонометрик ифодаларни соддалаштиришга татбиқи.
Мисол. 
x
x
x
x
3
3
sin
3
cos
cos
3
sin



ифодани соддалаштиринг. 
Ечиш. Агар тригонометрик формула ва айниятларни қўллайдиган бўлсак, нисбатан 
кўп ҳисоб-китоб ишларини қилишга тўғри келади. Берилган ифодани 
)
(
x
F
деб белгилаб, 
унинг ҳосиласини ҳисоблаймиз ҳамда уни соддалаштирамиз. 
.
4
cos
3
sin
3
sin
3
cos
3
cos
3
cos
sin
3
cos
3
sin
3
sin
3
sin
cos
3
sin
3
cos
3
cos
3
)
(
)
(
2
3
2
3
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
F
x
f










 
У ҳолда
,
4
sin
4
cos
3
)
(
)
(
4
3
C
x
xdx
dx
x
f
x
F






бу ерда С – бирор ўзгармас. Уни 
0
)
0
(

F
дан топамиз. Демак, С=0. 
Шундай қилиб,
x
x
F
4
sin
4
3
)
(

ёки 
.
4
sin
4
3
sin
3
cos
cos
3
sin
3
3
x
x
x
x
x




Кўриниб турибдики, ифодани ўзидан кўра унинг ҳосиласини соддалаштириш осонроқ 
бўлди ва берилган мисол ҳосила ва интегрални қўллаш орқали самарали ҳал қилинди дейиш 
мумкин. Шунга ўҳшаш кўплаб мисоллар келтириш мумкин. 
2.
Айниятларни исботлашга татбиқи. 
Мисол. 
x
ctg
ctgx
x
tg
x
tg
x
tg
16
16
8
8
4
4
2
2
tgx





айниятни исботланг. 
Ечиш. Тенгликни чап томонини 
f(x)
деб белгилаб, уни интеграллаймиз ва натижани 
соддалаштирамиз, яъни 
.
16
ln
sin
ln
16
sin
ln
sin
16
16
sin
ln
8
sin
2
16
sin
4
sin
2
8
sin
2
sin
2
4
sin
sin
2
2
sin
ln
8
cos
4
cos
2
cos
cos
ln
8
cos
ln
4
cos
ln
2
cos
ln
cos
ln
8
cos
8
sin
8
4
cos
4
sin
4
2
cos
2
sin
2
cos
sin
)
(
F(x)
C
x
x
C
x
x
C
x
x
x
x
x
x
x
x
C
x
x
x
x
C
x
x
x
x
dx
x
x
dx
x
x
dx
x
x
dx
x
x
dx
x
f


































 
У ҳолда 
ctgx
x
ctg





16
16
(x)
F
f(x)
. Демак айният исбот бўлди. 
3.
Тенгсизликларни исботлашга татбиқи. 
Мисол келтиришдан олдин қуйидаги маълум бўлган теоремани келтирамиз. 
Теорема. Агар 
g
ва
f
функциялар 
)
,
[
b
a
ярим интервалда узлуксиз бўлиб, ихтиёрий 
)
,
[
b
a
x

учун 
g(x)
)
(

x
f
бўлса, у ҳолда 



x
a
x
a
dt
t
g
dt
t
f
)
(
)
(
тенгсизлик ўринли бўлади. 
Энди шу теоремани қўлланишига доир мисол келтирамиз. 
Мисол. 
)
x
(0
x,
sinx




(1) тенгсизликдан фойдаланиб, қуйидаги тенгсизликларни 
исботланг 



Download 10,51 Mb.

Do'stlaringiz bilan baham:
1   ...   158   159   160   161   162   163   164   165   ...   710




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish