CRediT authorship contribution statement
Khanh Minh Dang: Validation, Formal analysis, Investigation, Data
curation, Writing-Original draft, Visualization.
Rangrong Yoksan: Conceptualization, Methodology, Resources, Data
curation, Writing-review and editing, Visualization, Supervision, Project
administration, Funding acquisition.
Acknowledgments
This research was supported by the National Research Council of
Thailand (NRCT) and the Postdoctoral Fellowship from Kasetsart
University.
References
[1] L. Av
´
erous, Biodegradable multiphase systems based on plasticized starch: a
review, J. Macromol. Sci., Polym. Rev. 44(3) (2004) 231
–
274. doi:10.1081/MC-
200029326.
[2] O.V. L
´
opez, N.E. Zaritzky, M.V.E. Grossmann, M.A. García, Acetylated and native
corn starch blend films produced by blown extrusion, J. Food Eng. 116 (2) (2013)
286
–
297,
https://doi.org/10.1016/j.jfoodeng.2012.12.032
.
[3] L. Mo
´
scicki, M. Mitrus, A. W
´
ojtowicz, T. Oniszczuk, A. Rejak, L. Janssen,
Application of extrusion-cooking for processing of thermoplastic starch (TPS), Food
Res. Int. 47 (2) (2012) 291
–
299,
https://doi.org/10.1016/j.foodres.2011.07.017
.
[4] X. Qiao, Z. Tang, K. Sun, Plasticization of corn starch by polyol mixtures,
Carbohydr. Polym. 83 (2) (2011) 659
–
664,
https://doi.org/10.1016/j.
carbpol.2010.08.035
.
[5] M. Thunwall, V. Kuthanova, A. Boldizar, M. Rigdahl, Film blowing of thermoplastic
starch, Carbohydr. Polym. 71 (4) (2008) 583
–
590,
https://doi.org/10.1016/j.
carbpol.2007.07.001
.
[6] R. Zullo, S. Iannace, The effects of different starch sources and plasticizers on film
blowing of thermoplastic starch: correlation among process, elongational
Fig. 7.
Water contact angle as a function of time for different TPS blown films
as mentioned in
Section 2.2
: (a) G38, (b) G40, (c) G42, (d) GX38, (e) GX40, (f)
GX42, (g) GS40, and (h) GS42.
K.M. Dang and R. Yoksan
International Journal of Biological Macromolecules 188 (2021) 290–299
299
properties and macromolecular structure, Carbohydr. Polym. 77 (2) (2009)
376
–
383,
https://doi.org/10.1016/j.carbpol.2009.01.007
.
[7] R.A. Talja, H. Hel
´
en, Y.H. Roos, K. Jouppila, Effect of type and content of binary
polyol mixtures on physical and mechanical properties of starch-based edible films,
Carbohydr. Polym. 71 (2) (2008) 269
–
276,
https://doi.org/10.1016/j.
carbpol.2007.05.037
.
[8] Y. Zhang, J.H. Han, Plasticization of pea starch films with monosaccharides and
polyols, J. Food Sci. 71 (6) (2006) 253
–
261,
https://doi.org/10.1111/j.1750-
3841.2006.00075.x
.
[9] D. Muscat, B. Adhikari, R. Adhikari, D.S. Chaudhary, Comparative study of film
forming behaviour of low and high amylose starches using glycerol and xylitol as
plasticizers, J. Food Eng. 109 (2) (2012) 189
–
201,
https://doi.org/10.1016/j.
jfoodeng.2011.10.019
.
[10]
A.D. Godwin, Plasticizers, in: C.D. Craver, C.E. Carraher (Eds.), Applied Polymer
Science: 21st Century, Pergamon, Oxford, 2000, pp. 157
–
175
.
[11] J. Juansang, C. Puttanlek, V. Rungsardthong, S. Puncha-Arnon, W. Jiranuntakul,
D. Uttapap, Pasting properties of heat-moisture treated canna starches using
different plasticizers during treatment, Carbohydr. Polym. 122 (2015) 152
–
159,
https://doi.org/10.1016/j.carbpol.2014.12.074
.
[12] R.A. Talja, H. Hel
´
en, Y.H. Roos, K. Jouppila, Effect of various polyols and polyol
contents on physical and mechanical properties of potato starch-based films,
Carbohydr. Polym. 67 (3) (2007) 288
–
295,
https://doi.org/10.1016/j.
carbpol.2006.05.019
.
[13] K.F. Tiefenbacher, Chapter six - wafer sheet manufacturing: technology and
products, in: K.F. Tiefenbacher (Ed.), Wafer and Waffle, Academic Press 2017, pp.
405
–
486.
[14] S. Maaran, R. Hoover, E. Donner, Q. Liu, Composition, structure, morphology and
physicochemical properties of lablab bean, navy bean, rice bean, tepary bean and
velvet bean starches, Food Chem. 152 (2014) 491
–
499,
https://doi.org/10.1016/j.
foodchem.2013.12.014
.
[15] M.R. Area, B. Montero, M. Rico, L. Barral, R. Bouza, J. Lopez, Properties and
behavior under environmental factors of isosorbide-plasticized starch reinforced
with microcrystalline cellulose biocomposites, Int. J. Biol. Macromol. 164 (2020)
2028
–
2037,
https://doi.org/10.1016/j.ijbiomac.2020.08.075
.
[16] A.B. Dias, C.M.O. Müller, F.D.S. Larotonda, J.B. Laurindo, Biodegradable films
based on rice starch and rice flour, J. Cereal Sci. 51 (2) (2010) 213
–
219,
https://
doi.org/10.1016/j.jcs.2009.11.014
.
[17] H. Liu, D. Chaudhary, The moisture migration behavior of plasticized starch
biopolymer, Dry. Technol. 29 (3) (2011) 278
–
285,
https://doi.org/10.1080/
07373937.2010.489208
.
[18] M.G. Lomeli-Ramirez, S.G. Kestur, R. Manriquez-Gonzalez, S. Iwakiri, G.B. de
Muniz, T.S. Flores-Sahagun, Bio-composites of cassava starch-green coconut fiber:
part II-structure and properties, Carbohydr. Polym. 102 (2014) 576
–
583,
https://
doi.org/10.1016/j.carbpol.2013.11.020
.
[19] J.J.G. van Soest, P. Essers, Influence of amylose-amylopectin ratio on properties of
extruded starch plastic sheets, J. Macromol. Sci. A 34 (9) (1997) 1665
–
1689,
https://doi.org/10.1080/10601329708010034
.
[20] J.J.G. van Soest, S.H.D. Hulleman, D. de Wit, J.F.G. Vliegenthart, Crystallinity in
starch bioplastics, Ind. Crop. Prod. 5 (1) (1996) 11
–
22,
https://doi.org/10.1016/
0926-6690(95)00048-8
.
[21] P. Myll
¨
arinen, A. Buleon, R. Lahtinen, P. Forssell, The crystallinity of amylose and
amylopectin films, Carbohydr. Polym. 48 (1) (2002) 41
–
48,
https://doi.org/
10.1016/S0144-8617(01)00208-9
.
[22] A. Bul
´
eon, H. Bizot, M.M. Delage, J.L. Multno, Evolution of crystallinity and
specific gravity of potato starch versus water ad- and desorption, Starch - St
¨
arke 34
(11) (1982) 361
–
366,
https://doi.org/10.1002/star.19820341102
.
[23] R. Shi, Z. Zhang, Q. Liu, Y. Han, L. Zhang, D. Chen, W. Tian, Characterization of
citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending,
Carbohydr. Polym. 69 (4) (2007) 748
–
755,
https://doi.org/10.1016/j.
carbpol.2007.02.010
.
[24] P.V.A. Bergo, R.A. Carvalho, P.J.A. Sobral, R.M.C. dos Santos, F.B.R. da Silva, J.
M. Prison, J. Solorza-Feria, A.M.Q.B. Habitante, Physical properties of edible films
based on cassava starch as affected by the plasticizer concentration, Packag.
Technol. Sci. 21 (2) (2008) 85
–
89,
https://doi.org/10.1002/pts.781
.
[25] E. Corradini, E. Souto de Medeiros, A.J.F. Carvalho, A.A.S. Curvelo, L.H.
C. Mattoso, Mechanical and morphological characterization of starch/zein blends
plasticized with glycerol, J. Appl. Polym. Sci. 101 (6) (2006) 4133
–
4139,
https://
doi.org/10.1002/app.23570
.
[26] R.M. Daudt, R.J. Avena-Bustillos, T. Williams, D.F. Wood, I.C. Külkamp-Guerreiro,
L.D.F. Marczak, T.H. McHugh, Comparative study on properties of edible films
based on pinh
˜
ao (Araucaria angustifolia) starch and flour, Food Hydrocoll. 60
(2016) 279
–
287,
https://doi.org/10.1016/j.foodhyd.2016.03.040
.
[27] C.L. Hoong, K.A. Alias, S.C. Choon, Effects of water-glycerol and water-sorbitol
interactions on the physical properties of konjac glucomannan films, J. Food Sci.
71 (2) (2006) 62
–
67,
https://doi.org/10.1111/j.1365-2621.2006.tb08898.x
.
[28] R. Mohamed, N. Mohd, N. Nurazzi, M.I. Siti Aisyah, F. Mohd Fauzi, Swelling and
tensile properties of starch glycerol system with various crosslinking agents, in: IOP
Conference Series: Materials Science and Engineering 223, 2017, pp. 1
–
7,
https://
doi.org/10.1088/1757-899x/223/1/012059
.
[29] S. Mali, L.S. Sakanaka, F. Yamashita, M.V.E. Grossmann, Water sorption and
mechanical properties of cassava starch films and their relation to plasticizing
effect, Carbohydr. Polym. 60 (3) (2005) 283
–
289,
https://doi.org/10.1016/j.
carbpol.2005.01.003
.
[30] A.A. Al-Hassan, M.H. Norziah, Starch
–
gelatin edible films: water vapor
permeability and mechanical properties as affected by plasticizers, Food Hydrocoll.
26 (1) (2012) 108
–
117,
https://doi.org/10.1016/j.foodhyd.2011.04.015
.
[31] H.A. Pushpadass, M.A. Hanna, Age-induced changes in the microstructure and
selected properties of extruded starch films plasticized with glycerol and stearic
acid, Ind. Eng. Chem. Res. 48 (18) (2009) 8457
–
8463,
https://doi.org/10.1021/
ie801922z
.
[32] B. Cuq, N. Gontard, L. Cuq, S. Guilbert, Selected functional properties of fish
myofibrillar protein-based films as affected by hydrophilic plasticizers, J. Agric.
Food Chem. 45 (3) (1997) 622
–
626,
https://doi.org/10.1021/jf960352i
.
[33] N. Laohakunjit, A. Noomhorm, Effect of plasticizers on mechanical and barrier
properties of Rice starch film, Starch - St
¨
arke 56 (8) (2004) 348
–
356,
https://doi.
org/10.1002/star.200300249
.
[34] S. Gaudin, D. Lourdin, P.M. Forssell, P. Colonna, Antiplasticisation and oxygen
permeability of starch
–
sorbitol films, Carbohydr. Polym. 43 (1) (2000) 33
–
37,
https://doi.org/10.1016/S0144-8617(99)00206-4
.
[35] P. Forssell, R. Lahtinen, M. Lahelin, P. Myll
¨
arinen, Oxygen permeability of amylose
and amylopectin films, Carbohydr. Polym. 47 (2) (2002) 125
–
129,
https://doi.org/
10.1016/S0144-8617(01)00175-8
.
[36] A. Nawab, F. Alam, M.A. Haq, A. Hasnain, Biodegradable film from mango kernel
starch: effect of plasticizers on physical, barrier, and mechanical properties, Starch
- St
¨
arke 68 (9
–
10) (2016) 919
–
928,
https://doi.org/10.1002/star.201500349
.
K.M. Dang and R. Yoksan