Termiz davlat universitetining pedagogika instituti tabiiy va aniq fanlar fakulteti



Download 0,57 Mb.
bet10/12
Sana24.04.2022
Hajmi0,57 Mb.
#579198
1   ...   4   5   6   7   8   9   10   11   12
Bog'liq
Jo\'rayeva Sevara mo\'m

2-§. Murakkab funksiyani hosilasi
va bo‘lsin. U holda funksiya erkli argumenti
dan va oraliq argumenti dan iborat murakkab funksiya bo‘ladi.
2-teorema. Agar funksiya nuqtada hosilaga ega bo‘lsa va funksiya mos nuqtada hosilaga ega bo‘lsa, u holda murakkab funksiya nuqtada differensiallanuvchi va

bo‘ladi.
Isboti. funksiya nuqtada differensiallanuvchi bo‘lgani uchun
bo‘ladi. Bundan .
funksiya nuqtada hosilaga ega. Shu sababli funksiya
nuqtada uzluksiz va da .
U holda

Bundan yoki
.
Shunday qilib, , ya’ni murakkab funksiyaning hosilasi berilgan funksiyaning oraliq argument bo‘yicha hosilasi bilan oraliq argumentning erkli argument bo‘yicha hosilasining ko‘paytmasiga teng.
Bu qoida oraliq argumentlar bir nechta bo‘lganda ham o‘z kuchida qoladi.
Masalan, bo‘lsa, bo‘ladi.


Parametrik va oshkormas ko‘rinishda berilgan
funksiyalarni differensiyallash
intervalda o’zgaruvchining va funksiyalari biror intervalda aniqlangan bo‘lib, bu intervalda , hosilalar va funksiyaga teskari funksiya mavjud bo‘lsin. Agar funksiya qat’iy monoton bo‘lsa, teskari funksiya bir qiymatli, uzluksiz va qat’iy monoton bo‘ladi. Shu sababli murakkab funksiya mavjud bo‘ladi. Bunda funksiya va tenglamalar bilan parametrik ko’rinishda ( parametrli) berilgan deyiladi.
funksiya

parametrik tenglamalar bilan berilgan bo‘lsin. U holda teskari funksiya mavjud va uning hosilasi . Shuningdek murakkab funksiya hosilasi bo‘ladi.
Bundan
yoki . (1)
Misol. funksiya uchun ni topamiz:

Agar funksiya ga nisbatan yechilmagan, ya’ni ko‘rinishda berilgan bo‘lsa, funksiya oshkormas ko’rinishda berilgan deyiladi.
Oshkor berilgan har qanday funksiyani oshkormas ko‘rinishda kabi yozish mumkin, ammo teskarisini hamma vaqt bajarib bo‘lmaydi, tenglamani ga nisbatan yechish hamma vaqt ham oson emas, ayrim hollarda esa umuman mumkin emas.
Funksiya oshkormas ko‘rinishda berilgan bo‘lsa, funksiya ning murakkab funksiyasi deb qaraladi va tenglikning chap va o‘ng tomoni
bo‘yicha differensiyalanadi, so‘ngra hosil bo’lgan tenglamadan topiladi.
Misol. funksiya uchun ni topamiz. Bunda tenglikning har ikkala tomonini bo’yicha differensiallaymiz:
.
Bundan
,
yoki



Download 0,57 Mb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish