Свойства множественного коэффициента корреляции
Численное значение множественного коэффициента корреляции заключено между нулем и единицей:
Если значение множественного коэффициента равно единице, то соответствующая переменная связана с остальными переменными линейной функциональной зависимостью.
Например, если , то точки расположены в плоскости регрессии X на (Y,Z).
Если значение множественного коэффициента равно нулю, то соответствующая случайная величина стохастически независима от других переменных, входящих в анализ.
В частности, если , то одномерная случайная величина X и двумерная случайная величина (Y,Z) являются независимыми.
Множественный коэффициент корреляции не уменьшается при введении в модель дополнительных признаков и не увеличивается при исключении отдельных признаков из модели.
По величине множественный коэффициент корреляции каждой переменной не меньше абсолютной величины частного коэффициента корреляции данной и любой другой переменной.
Уравнение линейной регрессии
или
,
где ; - частные коэффициенты регрессии.
Замечание.
Частные коэффициенты регрессии , показывают, как в среднем изменится результативный признак Z, если факторный признак X, соответственно Y увеличится на единицу при фиксированном значении другого факторного признака Y, соответственно X.
Для расчета условных средних квадратических отклонений используются формулы:
; ;
; .
Функция регрессии линейно зависит от двух переменных x, y., следовательно, поверхность, соответствующая ей, представляет собой плоскость.
Проверка значимости коэффициентов связи
Рассмотрим эти процедуры на примерах проверки значимости и .
а) Для частного коэффициента корреляции
Если верна основная гипотеза , то статистика критерия:
имеет распределение Стьюдента с числом степеней свободы, равным .
При уровне значимости исходная гипотеза отвергается, если справедливо неравенство , где - критическое значение, удовлетворяющее условию .
б) Для множественного коэффициента корреляции
При справедливости основной гипотезы статистика критерия:
имеет распределение Фишера-Снедекора с числами степеней свободы, равными 2 и .
При уровне значимости гипотеза отвергается, если выполняется неравенство , где - критическое значение, удовлетворяющее условию .
Замечание.
Для переменных, множественные коэффициенты корреляции которых значимые, допустимы оценки уравнения регрессии. В этом случае для обоснованного использования на практике полученного выборочного аналога уравнения регрессии необходима интервальная оценка соответствующих частных коэффициентов корреляции.
Определение ДИ для частного коэффициента корреляции
Например, при нахождении границ доверительного интервала для :
выполняется прямое преобразование Фишера:
;
определяется квантиль , исходя из условия ;
вычисляются значения и ;
с помощью обратного преобразования Фишера находятся границы искомого ДИ:
и .
Do'stlaringiz bilan baham: |