§ 25: Arqonning sirpanishi haqidagi masala.
Masala. Arqon stol ustida yotibdi, uning uchlaridan biri stol ustidan a masofada bo`lgan silliq bilok orqali o`tgazilgan. Boshlang`ich momentda 2a uzunlikdagi arqon bo`lagi blokning narigi tomonida erkin osilib turibdi. Arqonning bu uchining harakat tezligi v ni s yo`lga bog`liq ravishda toping, bunday harakatda ishqalanish qarshiligi tezlik kvadratiga teng deb qabul qilinadi.
Yechilishi: Agar blokni yo`lning sanoq boshi sifatida tanlab olsak va Os o`qni pastga yo`naltirsak, Nyutonning ikkinchi qonuni m bizning holda ushbu differinsial tenglamaga olib keladi :
Bu yerda g-og`irlik kuchi tezlanishi .
Bo’lgani uchun tenglamani quyidagicha yozish mumkin :
Bu esa Bernulli differensial tenglamasidir.
, ,
Almashtirishni bajarsak, oxirgi tenglama quyidagi ko`rinishdagi chiziqli tenglamaga keladi;
.
Bu tenglamaning umumiy yechimi tenglama bo`yicha topamiz;
Z= =
=
S=2a da v=0 boshlang`ich shartdan C=-4g ni topamiz, natijada xususiy integral ushbu ko`rinishda bo`ladi:
.
Qavis ichidagi ifodani ko`paytuvchilarga ajratish mumkin;
= .
Shunday qilib , v ni s ga bog`liq holda hosil qilamiz:
.
Harakat tekis tezlanuvchan ekanligini isbot qilamiz. Buning uchun hosil qilingan tenglikning ikkala tomonini kvadratga ko`taramiz va t bo`yicha diferensiallaymiz. Natijada
,
Biroq va
Shuning uchun
,
Shuni isbot qilish kerak edi.
Xulosa
Birinchi tartibli differensial tenglamalarning muhim sinflaridan biri Bernulli differensial tenglamasi va uni yechishda muhim rol o`ynaydigan birinchi tartibli chiziqli differensial tenglamani yechishni turli usullarini o`rganish muhim ahamiyatga egadir.
Bitiruv malakaviy ishida chiziqli tenglamalarning yechishning Eyler- Bernulli va Lagranj usullari bayon etiladi va bu usullar konkret misollarni yechishda tadbiq etiladi.
Bernulli differensial tenglamasini yechimini mavjudligi va yagonaligi haqidagi teoremaning isboti keltiriladi, shuningdek bu tenglamaning maxsus yechimi masalasi ham o`rganiladi.
Bernulli differensial tenglamasiga keltirib yechiladigan tenglamalarning sinflari (Darbu, Yakobi va Rikkate differensial tenglamalari) o`rganiladi va bu hollarga doir konkret misollarni yechish ko`rsatiladi.
Bernulli differensial tenglamasiga keltirib yechiladigan fizikayiy masala (argonning sirpanishi haqida masala ) o`rganiladi va uni yechishi bayon etiladi.
A D A B I YO T L A R:
A.S. Piskunov. Differensial va integral hisob. T. «O’qituvchi», 1974 y ,54 – 100 betlar.
L.E.Elsgolts. Differensialnie uravneniya i variatsionnoe ischislenie. M. ,»Nauka» , 1969 g. ,s . 85 – 124 .
L.S.Pontryagin. Differentsialnie uravneniya i ix prilojeniya. M., Nauka , 1965 g., s.41 – 66 .
4. M.S. Salohitdinov, O’.N. Nasritdinov. Oddiy differensial tenglamalar. T. «Uzbekiston» , 1994 y., 103 – 155 betlar .
5. V.P. Minorskiy. Oliy matematikadan masalalar to’plami. T. «O’qituvchi», 1977, 234-240 betlar.
www.ziyonet.uz
Do'stlaringiz bilan baham: |