Solving Trigonometric Equations She Loves Math


Solving Trig Problems with Multiple Angles – General Solutions



Download 105,74 Kb.
Pdf ko'rish
bet10/20
Sana26.04.2020
Hajmi105,74 Kb.
#47348
1   ...   6   7   8   9   10   11   12   13   ...   20
Bog'liq
shelovesmath com

Solving Trig Problems with Multiple Angles – General Solutions

Now let’s solve the same multiple angle problems, but get solutions between  0 and \(2\pi k\).

Note again that when we solve these types of trig problems, we always want to  solve for the General Solution first, and then go back and see how many solutions are on

the Unit Circle (between 0 and \(2\pi k\)).





Solving Trig Problems with Multiple Angles:   \(\boldsymbol{\left[ {0,2\pi } \right]}\)

\(\displaystyle \tan \left( {3\theta } \right)=\sqrt{3}\)

 

\(3\theta =\frac{\pi }{3}+\pi k\,\,\,\,\,\,\,\,3\theta



=\frac{{4\pi }}{3}+\pi k\)

 

Looking at Unit Circle, this can be simplified to:



\(\displaystyle \begin{array}{c}3\theta =\frac{\pi }

{3}+\pi k\\\,\theta =\frac{\pi }{9}+\frac{\pi }

{3}k\,\,=\,\,\frac{\pi }{9}+\frac{{3\pi }}{9}k\end{array}\)

 

Looking at the Unit Circle, we can get solutions



between 0 and \(2\pi \) by adding \(\frac{{3\pi }}{9}\),

staying under \(2\pi \):

\(\theta =\left\{ {\frac{\pi }{9},\frac{{4\pi }}

{9},\frac{{7\pi }}{9},\frac{{10\pi }}{9},\frac{{13\pi }}

{9},\frac{{16\pi }}{9}} \right\}\)

  

\(\displaystyle 2\cos \left( {3x} \right)+\sqrt{3}=0\)



 

\(\displaystyle \begin{array}{c}\cos \left( {3x} \right)=-

\frac{{\sqrt{3}}}{2}\\\,\,\,3x=\frac{{5\pi }}{6}+2\pi

k\,\,\,\,\,\,\,\,\,3x=\frac{{7\pi }}{6}+2\pi k\\\,\,\,x=\frac{{5\pi }}

{{18}}+\frac{{12}}{{18}}\pi k\,\,\,\,\,\,\,\,\,\,x=\frac{{7\pi }}

{{18}}+\frac{{12}}{{18}}\pi k\end{array}\)

 

Looking at the Unit Circle, we can get solutions between  0 and



\(2\pi \) by adding \(\frac{{12\pi }}{{18}}\), staying under \(2\pi \):

\(x=\left\{ {\frac{{5\pi }}{{18}},\frac{{17\pi }}{{18}},\frac{{29\pi }}

{{18}},\frac{{7\pi }}{{18}},\frac{{19\pi }}{{18}},\frac{{31\pi }}{{18}}}

\right\}\)

\(\displaystyle \sqrt{2}\sec \left( {\frac{x}{6}} \right)-

2=0\)


 

\(\displaystyle \begin{array}{c}\sec \left( {\frac{x}{6}}

\right)=\frac{2}{{\sqrt{2}}}\,\,\,\,\,\,\,\left( {\cos \left(

{\frac{x}{6}} \right)=\frac{{\sqrt{2}}}{2}}

\right)\\\,\,\frac{x}{6}=\frac{\pi }{4}+2\pi

k\,\,\,\,\,\,\,\,\,\,\,\frac{x}{6}=\frac{{7\pi }}{4}+2\pi

k\\\,\,\,x=\frac{{6\pi }}{4}+12\pi

k\,\,\,\,\,\,\,\,\,\,\,\,x=\frac{{42\pi }}{4}+12\pi

k\end{array}\)

 

Looking at the Unit Circle, the only solution that will



work is \(\frac{{6\pi }}{4}=\frac{{3\pi }}{2}\).

\(x=\left\{ {\frac{{3\pi }}{2}} \right\}\)

\(\displaystyle 5{{\cos }^{2}}\left( {\frac{\theta }{3}}

\right)=5\)

 

\(\displaystyle \begin{array}{c}\sqrt{{{{{\cos



}}^{2}}\left( {\frac{\theta }{3}}

\right)}}=\sqrt{1}\\cos\left( {\frac{\theta }{3}}

\right)=\pm 1\\\,\,\,\frac{\theta }{3}=0+2\pi

k\,\,\,\,\,\,\,\,\,\,\frac{\theta }{3}=\pi +2\pi

k\end{array}\)

 

\(\displaystyle 2{{\sin }^{2}}\left( {2x} \right)=1\)



 

\(\displaystyle \begin{array}{c}\sqrt{{{{{\sin }}^{2}}\left( {2x}

\right)}}=\sqrt{{\frac{1}{2}}}\\\sin \left( {2x} \right)=\,\,\pm \frac{1}

{{\sqrt{2}}}=\,\,\pm \frac{{\sqrt{2}}}{2}\\\,\,\,2x=\frac{\pi }{4}+2\pi

k\,\,\,\,\,\,\,\,\,\,2x=\frac{{3\pi }}{4}+2\pi k\\\,\,\,2x=\frac{{5\pi }}

{4}+2\pi k\,\,\,\,\,\,\,\,2x=\frac{{7\pi }}{4}+2\pi k\end{array}\)

 

Looking at the Unit Circle, this can be simplified to:



\(\displaystyle \begin{array}{c}2x=\frac{\pi }{4}+\pi

k\,\,\,\,\,\,\,\,\,\,2x=\frac{{3\pi }}{4}+\pi k\\\,\,\,\,\,\,\,\,x=\frac{\pi }

\(\displaystyle \tan \left( {\frac{\theta }{2}-\frac{\pi }{3}}

\right)=-1\)

 

\(\displaystyle \begin{array}{c}\frac{\theta }{2}-



\frac{\pi }{3}=\frac{{3\pi }}{4}+\pi k\\\frac{\theta }{2}-

\frac{\pi }{3}=\frac{{7\pi }}{4}+\pi k\end{array}\)

 

Looking at the Unit Circle, this can be simplified to:



\(\displaystyle \begin{array}{c}\frac{\theta }

{2}-\frac{\pi }{3}=\frac{{3\pi }}{4}+\pi

k\\\frac{\theta }{2}=\left( {\frac{{3\pi }}

{4}+\frac{\pi }{3}} \right)+\,\,\pi

k\\\frac{\theta }{2}=\frac{{13\pi }}{{12}}+\pi



Looking at the Unit Circle, this can be simplified to:

\(\displaystyle \begin{array}{c}\frac{\theta }{3}=\pi

k\\\theta =3\pi k\end{array}\)

 

Looking at the Unit Circle, the only solution that will



work is 0.

\(\displaystyle \theta =\left\{ 0 \right\}\)

{8}+\frac{\pi }{2}k,\,\,\,x=\frac{{3\pi }}{8}+\frac{\pi }

{2}k\end{array}\)

 

Looking at the Unit Circle, we can get solutions between  0 and



\(2\pi \) by adding \(\frac{{4\pi }}{8}\), staying under \(2\pi \):

\(\displaystyle x=\left\{ \begin{array}{l}\frac{\pi }{8},\frac{{5\pi }}

{8},\frac{{9\pi }}{8},\frac{{13\pi }}{8},\\\frac{{3\pi }}{8},\frac{{7\pi }}

{8},\frac{{11\pi }}{8},\frac{{15\pi }}{8}\end{array} \right\}\)

k\\\theta =\frac{{13\pi }}{6}+2\pi

k\end{array}\)

 

Looking at the Unit Circle, the only solution that will



work is:

\(\begin{array}{c}\frac{{13\pi }}{6}-2\pi

=\frac{\pi }{6}\\\theta =\left\{ {\frac{\pi }{6}}

\right\}\end{array}\)

 


Download 105,74 Kb.

Do'stlaringiz bilan baham:
1   ...   6   7   8   9   10   11   12   13   ...   20




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish