Solving Trig Problems with Multiple Angles – General Solutions
\(\displaystyle \tan \left( {3\theta }
\right)=\sqrt{3}\)
\(3\theta =\frac{\pi }{3}+\pi
k\,\,\,\,\,\,\,\,3\theta =\frac{{4\pi }}{3}+\pi k\)
Looking at Unit Circle, this can be
simplified to:
\(\displaystyle \begin{array}{c}3\theta
=\frac{\pi }{3}+\pi k\\\left\{ {\theta |\theta
=\frac{\pi }{9}+\frac{\pi }{3}k}
\right\}\end{array}\)
\(\displaystyle 2\cos \left( {3x}
\right)+\sqrt{3}=0\)
\(\displaystyle \begin{array}{c}\cos \left(
{3x} \right)=-\frac{{\sqrt{3}}}
{2}\\\,\,\,3x=\frac{{5\pi }}{6}+2\pi
k\,\,\,\,\,\,\,\,\,\,3x=\frac{{7\pi }}{6}+2\pi
k\\\\\left\{ {x|x=\frac{{5\pi }}{{18}}+\frac{2}
{3}\pi k,\,\,x=\frac{{7\pi }}{{18}}+\frac{2}
{3}\pi k\,\,} \right\}\end{array}\)
\(\displaystyle \sqrt{2}\sec \left( {\frac{x}{6}} \right)-
2=0\)
\(\displaystyle \begin{array}{c}\sec \left( {\frac{x}{6}}
\right)=\frac{2}{{\sqrt{2}}}\,\,\,\,\,\,\,\,\left( {\cos \left(
{\frac{x}{6}} \right)=\frac{{\sqrt{2}}}{2}}
\right)\\\,\,\frac{x}{6}=\frac{\pi }{4}+2\pi
k\,\,\,\,\,\,\,\,\,\,\,\,\frac{x}{6}=\frac{{7\pi }}{4}+2\pi
k\\\,\,\,x=\frac{{6\pi }}{4}+12\pi
k\,\,\,\,\,\,\,\,\,\,\,\,x=\frac{{42\pi }}{4}+12\pi k\\\\\left\{
{x|x=\frac{{3\pi }}{2}+12\pi k,\,\,\,\,x=\frac{{21\pi }}
{2}+12\pi k\,\,} \right\}\end{array}\)
\(\displaystyle 2{{\sin }^{2}}\left( {2x}
\(\displaystyle 5{{\cos }^{2}}\left(
{\frac{\theta }{3}} \right)=5\)
\(\displaystyle \begin{array}{c}\sqrt{{{{{\cos
}}^{2}}\left( {\frac{\theta }{3}}
\right)}}=\sqrt{1}\\cos\left( {\frac{\theta }{3}}
\right)=\pm 1\\\,\,\,\frac{\theta }{3}=0+2\pi
k\,\,\,\,\,\,\,\,\frac{\theta }{3}=\pi +2\pi
k\end{array}\)
Looking at Unit Circle, this can be
simplified to:
\(\displaystyle \begin{array}{c}\frac{\theta }
{3}=\pi k\\\left\{ {\theta |\theta =3\pi k}
\right\}\end{array}\)
\right)=1\)
\(\displaystyle \begin{array}{c}{{\sin
}^{2}}\left( {2x} \right)=\frac{1}
{2}\\\sqrt{{{{{\sin }}^{2}}\left( {2x}
\right)}}=\sqrt{{\frac{1}{2}}}\\\sin \left( {2x}
\right)=\,\,\pm \frac{1}{{\sqrt{2}}}=\,\,\pm
\frac{{\sqrt{2}}}{2}\\\,\,\,2x=\frac{\pi }
{4}+2\pi k\,\,\,\,\,\,\,\,\,\,\,\,2x=\frac{{3\pi }}
{4}+2\pi k\\\,\,\,2x=\frac{{5\pi }}{4}+2\pi
k\,\,\,\,\,\,\,\,\,\,2x=\frac{{7\pi }}{4}+2\pi
k\end{array}\)
Looking at Unit Circle, this can be
simplified to:
\(\displaystyle \begin{array}{l}2x=\frac{\pi }
{4}+\pi k\,\,\,\,\,\,\,\,\,\,\,\,2x=\frac{{3\pi }}
{4}+\pi k\\\left\{ {x|x=\frac{\pi }{8}+\frac{\pi }
{2}k,\,\,\,x=\frac{{3\pi }}{8}+\frac{\pi }{2}k}
\right\}\end{array}\)
\(\displaystyle \tan \left( {\frac{\theta }{2}-\frac{\pi }{3}}
\right)=-1\)
\(\frac{\theta }{2}-\frac{\pi }{3}=\frac{{3\pi }}{4}+\pi
k\,\,\,\,\,\,\,\,\,\frac{\theta }{2}-\frac{\pi }{3}=\frac{{7\pi
}}{4}+\pi k\)
Looking at Unit Circle, this can be simplified to:
\(\displaystyle \begin{array}{c}\frac{\theta }{2}-
\frac{\pi }{3}=\frac{{3\pi }}{4}+\pi k\\\\\frac{\theta }
{2}=\left( {\frac{{3\pi }}{4}+\frac{\pi }{3}} \right)+\pi
k\\\frac{\theta }{2}=\frac{{13\pi }}{{12}}+\pi k\\\\\left\{
{\theta |\theta =\frac{{13\pi }}{6}+2\pi k}
\right\}\,\text{or}\,\left\{ {\theta |\theta =\frac{\pi }
{6}+2\pi k} \right\}\end{array}\)
Do'stlaringiz bilan baham: |