Пример 17. Определить, при каких система имеет а точности два решения.
Сделаем замену: . Тогда имеем: . Тогда, сделав обратную замену, будем иметь две системы уравнений: 1) , 2) . Применим обратную теорему Виету для квадратного уравнения: . Очевидно, что для того, чтобы решений было ровно два, необходимо, чтобы .
Ответ: .
Пример 18. При каких значениях параметра система неравенств имеет единственное решение.
Заметим, что данная система является симметрической. Поэтому единственное ее решение надо искать в виде .
Подставив в любое из неравенств, получаем квадратичную функцию . График данной функции является парабола с ветками, направленными вверх. Тогда для того, чтобы данное неравенство имело единственное решение, необходимо его дискриминант приравнять к нулю:
Ответ:
Циклические системы
Рассмотрим систему уравнений . Здесь выражение зависит от переменных. Заметим, что при циклической замене получается та же самая система уравнений, отличающаяся только порядком уравнений. Такого вида системы называют циклическими.
Цикличность системы позволяет относительно просто найти те решения, все компоненты которых одинаковы, то есть . Для этого достаточно решить уравнение . Данное уравнение называется вырожденное.
Если же все компоненты решений разные, то совершая замену, можно прийти к правильному ответу.
Рассмотрим примеры.
Пример 19. Решите систему уравнений
Пусть – есть решение системы. Подставим и получим вырожденное уравнение . Его решениями будут все числа вида .
Теперь будем полагать, что система имеет еще какие-то решения. Для конкретики допустим, что . Подставим в систему и получим: . Вычтем из первого уравнения второе: . Но мы знаем, что . Следовательно, из последнего равенства вытекает неравенство: , что, очевидно, не верно. Значит других решений система не имеет.
Ответ:
Пример 20. Решите систему уравнений
Решим вырожденное уравнение. . Заметим, что в левой части стоит монотонно убывающая функция, а в правой части – возрастающая. Тогда можем сделать вывод о том, что уравнение имеет не более одного решения. Его легко заметить: .
Положим, что есть посторонние корни . Вычтем из третьего уравнения второе и получим: . Но при сделанное предположении, данное равенство не может выполняться, так как правая часть всегда отрицательна, а левая – положительна.
Ответ:
Пример 21. Решите систему уравнений .
Введем обозначения: . Тогда имеем систему: (*). Первые два решения ее очевидны: . Пусть система имеет и другие решения. Положим, что . В первом случае, если , то с помощью неравенства Коши несложно получить, что . Аналогично и для . Если сложить все уравнения системы (*), получим равенство , которое, в свою очередь, не может выполняться, так как , а . Для случая, когда доказательство аналогично.
Заметим, что все корни системы всегда имеют одинаковый знак (это следует из системы (*)). Тогда случай с имеет аналогичное доказательство.
Ответ:
Do'stlaringiz bilan baham: |