Пример 12. Метод неопределенных коэффициентов. Разложить на множители многочлен
Выражая данный симметрический многочлен через элементарные симметрические многочлены, имеем: . Если рассматривать этот многочлен как квадратное уравнение относительно , заметим, что оно не имеет решения в области действительных чисел.
В данном случае применим следующий прием: рассматриваемый симметрический многочлен представляется в виде произведения двух несимметрических множителей, каждый из которых представляет собой «отражение» другого множителя. Иными словами, симметрический многочлен представим в виде , где – неопределенные коэффициенты (пока не известные нам).
Вернемся к исходному многочлену. Попытаемся представить исходный многочлен в виде . Очевидно, что данное равенство должно выполняться при всех допустимых значениях , но это значит, что верно и при любых конкретных значениях . Положив , имеем: (*). Заметим, что если в равенстве (*) у всех трех коэффициентов заменить знаки на противоположные, то равенство останется справедливым, поэтому мы можем считать, что . Теперь, полагая, что , получаем . Наконец, подставив , получаем, что .
Таким образом, имея три неизвестных, мы получили три уравнения, которые запишем в системе следующим образом: .
Если в правой части второго уравнения взять знак «+», данная система легко решается: . Таким образом, исходный многочлен раскладывается следующим образом: .
В случае, если мы взяли «-», то получили бы систему, имеющую только комплексные корни. Другими словами, первоначальный многочлен имеет не единственное разложение, но единственное с действительными коэффициентами.
Ответ: .
Неравенства
С помощью элементарных симметрических многочленов можно доказывать и некоторые неравенства.
Теорема. Пусть – действительные числа. Тогда для того, чтобы числа , определенные в системе уравнений , были действительными, необходимым и одновременно достаточным условием является удовлетворение следующего неравенства: .
Без доказательства.
Применение к решению. Пусть необходимо доказать, что при каких-то действительных значениях симметрический многочлен . Сперва выражаем исходный многочлен через элементарные симметрические многочлены . Затем в полученном многочлене заменяем , где изначально . Величина неотрицательна.
Рассмотрим на конкретных примерах.
Пример 13. Доказать, что если – действительные числа, удовлетворяющие неравенству , то справедливы неравенства: 1) , 2)
Сделаем замену . Докажем справедливость неравенства 1). Мы имеем: . Теперь заменяем и получаем: . Величина неотрицательна и по условию задачи . Тогда , ч.т.д.
Неравенство 2) доказывается аналогичным образом.
Замечание: данные случаи можно обобщить и вывести общую теорему. Если для всех действительных , и n – натуральное число, то
Do'stlaringiz bilan baham: |