Примеры решений простейших уравнений и их систем
Пример 1. Решить систему уравнений:
Приступим к решению. Во-первых, нетрудно заметить, что все многочлены, входящие в систему, симметричные. Тогда введем обозначения: , . После чего исходная система принимает вид: . Данная система легко решается подстановкой переменной во второе уравнение из первого: В итоге из первоначальной системы получили еще одну систему: .
Здесь будет вполне достаточно одного примера для пояснения подхода при решении задач.
Пример 2. Решить систему уравнений: (1)
Нетрудно заметить, что все многочлены системы не симметрические. Как же оно «затисалось» в нашу тему?
Раз тема называется «симметрические многочлены» то очевидно, что мы каким-то образом должны получить из несимметрического многочлена – симметрический. В исходной системе (1) введем новую переменную . Тогда, заменяя таким образом , придем к следующей системе: . Решение подобной системы рассматривалось в примере 1.
Пример 3. Решить иррациональное уравнение
Данное уравнение также будем решать с помощью замены. Пусть , тогда . Но одновременно с этим условием еще имеем: . Таким образом, мы получили систему из двух уравнений, решение которой было показано выше: .
Ответ:
Пример 4. Составить квадратное уравнение, корнями которого являются кубы корней квадратного уравнения .
Такого рода задачи носят название «задачи о квадратных уравнениях». Пусть – корни данного уравнения. Тогда по теореме Виета имеем: . Пусть – корни искомого уравнения. Из условия вытекает равенство: . Очевидно, что и для необходимого квадратного уравнения будет выполняться теорема Виета (уравнение вида ): . Обозначим: . Искомое уравнение
Ответ:
Пример 5. Решить уравнение .
Рассматриваемое уравнение носит специальное название, возвратное. Возвратным уравнение будем называть такое уравнение, в котором равноудаленные от концов коэффициенты совпадают (пример: .
Перейдем непосредственно к решению конкретного уравнения. Легко заметить, что не является корнем. Тогда разделив обе части исходного уравнения на , получим: . Если рассуждать обще, то мы имеем симметрический многочлен от двух переменных , хотя переменная в уравнении лишь одна. Пусть , тогда имеем: . В итоге, мы приходим к совокупности двух уравнений: .
Ответ:
Пример 6. Разложить на множители многочлен
Выразим исходный многочлен через элементарные симметрические многочлены: . Рассмотрим полученный многочлен как квадратное уравнение относительно . Тогда имеем корни: . Вспомним, что любое квадратное уравнение, имеющее корни , вида , раскладывается на множители следующим образом: . В соответствии с данным утверждением, в нашем случае имеем: .
Теперь, вернувшись к первоначальным переменным, будем иметь: . Первое уравнение имеет решение только в области комплексных чисел (то есть его разложение на множители мы рассматривать не будем). Второе же уравнение раскладывается следующим образом: . После этого получаем ответ.
Ответ:
Do'stlaringiz bilan baham: |